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Minimum Cut
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Reminder: Given a graph G = (V, E), a cut is a partition (4, B)
of VsuchthatV = AUB,ANB=0,A,B+0

Size of the cut (4, B): # of edges crossing the cut @5
e For weighted graphs, total edge weight crossing the

/lvqgﬂ C@huecé':v-‘:%
Goal: Find a cut of minimal size (i.e., of size A(G))

Maximum-flow based algorithm:

* Fixs, compute min s-t-cut for al@g
e 0(m-A(G)) = O(mn) per s-t cut

e Gives an O(mn/l(G)) = 0(mn?)-algorithm Q(Vﬁ)

Best-known deterministic algorithm: O (mn + n? logn)
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Edge Contractions
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* Inthe following, we consider multi-graphs that can have
multiple edges (but no self-loops)

<g ; : §’§ Snotok
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Contracting edge {u, v}:

* Replace nodes u, v by new node w
_=* Forall edges {u, x} and {v, x}, add an edge {w, x}
e Remove self-loops created at node w

‘ contract {u, v}
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Properties of Edge Contractions

Nodes: @D
e After contracting {u, v}, the new node represents u and v

e After a series of contractions, each node represents a subset of
the original nodes

e Assume in the contracted graph, w represents nodes S,, C V

* The edges of a node w in a contracted graph are in a one-to-one

correspondence with the edges crossing the cut (S,,,V \ S,,)
=/ T
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Randomized Contraction Algorithm
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Algorithm:

while there are > 2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0(n?).

e We will show this next.

Theorem The random contraction algorithm can be implemented
|n time 0(n?).

e There are n — 2 contractions, each can be done in time 0(n).

* You will show this in the exercises.
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Contractions and Cuts
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Lemma: If two original nodes u, v € VV are merged into the same

node of the contracted graph, there is a path connecting u and v
in the original graph s.t. all edges on the path are contracted.

Proof:

e Contracting an edge {x, y} merges the node sets represented by
x and y and does not change any of the other node sets.

e The claim the follows by induction on the number of edge
contractions.

oS, S,
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Contractions and Cuts
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Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

e All cutsin a (partially) contracted graph correspond to cuts of
the same size in the original graph G as follows:

— For a node u of the contracted graph, let S,, be the set of original nodes
that have been merged into u (the nodes that u represents)

— Consider a cut (4, B) of the contracted graph
— (A’,B") with

A= US”’ B := US,,

UEA VEB

C—

isa cut of G.

— The edges crossing cut (4, B) are in one-to-one correspondence with the
edges crossing cut (4, B).
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Lemma: The contraction algorithm outputs a cut (4, B) of the input
graph G if and only if it never contracts an edge crossing (4, B).

Proof:

1. If an edge crossing (A4, B) is contracted, a pair of nodes u € 4,
v € V is merged into the same node and the algorithm outputs
a cut different from (4, B).

2. Ifnoedge of (4, B) is contracted, notwonodesu € A, v € B
end up in the same contracted node because every path
connecting u and v in G contains some edge crossing (4, B)

In the end there are only 2 sets = outputis (4, B)

a—
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Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

“

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) i s Kk, k,

G: has at least kn/2 edges. :§
— Vadu}
W

Proof:

e Min cut has size k = all nodes have degree > k
— A node v of degree < k gives a cut ({v},V \ {v}) of size < k

b
* Number of edgesm =1/, -3, deg(v) = %
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Theorem: The probability that the algorithm oEtPuts a minimum
2 'm}

cutisatleast 2/n(n —1).
\_2
S A¥HE

Proof:
e Consider a fixed min cut (4, B), assume (4, B) has size k k

e The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

e Before contractlon [, there are n+ 1 —1inodes
- and thus > (n F1-— ik/2 edges

———

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i is at most

K 2

nm+1—-Dk n+1-i

2 —_—

f
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Getting The Min Cut
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Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

Proof:

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i isat most 2/, ;_;.

e Event &;: edge contracted in step i is not crossing (A4, B)
——
2. - -
(‘KQ 6(1 ﬂ€_> Z \ W T k-
‘%5& - Coul'\f
QNSQN‘L ca b
(A)
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Getting The Min Cut
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Theorem: The probability that the algorithm outputs a minimum

cutis atleast 2/n(n —1). 1o n-3
Proof: u/
- 2 _ wl ol
* PE[E N NE ) 21— = 0
* No edge crossing (4, B) contracted: event £ = N2 E;

—

PE)=T(E)-PENE)REN €06+ . FEua) € Euas)

M,L"ﬁ.“i.’f.f@_.rz o
>//‘°‘2 SR R A Oy ")

=
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Randomized Min Cut Algorithm
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Theorem: If the contraction algorithm is repeated O(Zn2 logn)
times, one of the O(n? logn) instances returns a min. cut w.h.p.

Proof:

e Probability to not get a minimum cut m@- (2) - In n iterations:

1\ 1
Zr 1 _ _\_a(‘fﬂma

()
Corollary: The contraction algorithnéllows to compute a minimum
cutin 0(n*logn) time w.h.p.

Q_—_’——\

 Each instance can be implemented in O (n?) time.
(O(n) time per contraction)
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Can We Do Better?
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e Time O(n*logn) is not very spectacular, a simple max flow
based implementation has time 0 (n*).

However, we will see that the contraction algorithm is
nevertheless very interesting because:

1. The algorithm can be improved to beat every known
deterministic algorithm.

1. It allows to obtain strong statements about the distribution
of cuts in graphs.
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Better Randomized Algorithm
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Recall:
e Consider a fixed min cut (4, B), assume (4, B) has size k

e The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

 Throughout the algorithm, the edge connectivity is at least k
and therefore each node has degree = k

e Before contraction i, therearen + 1 — i nodes and thus at
least (n + 1 — i)k /2 edges

* If no edge crossing (A4, B) is contracted before, the probability
to contract an edge crossing (A, B) in step i is at most

koo 2
m+1—-Dk n+1-i
2
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e For a specific min cut (4, B), if (4, B) survives the first i
contractions,

[P(edge crossing (4, B) in contraction i 4#2) < —
— LSt

 Observation: The probability only gets large for large i

* Idea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early
ones.
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Lemma: A given min cut (4, B) of an n-node graph G survives the

p— 1
firstn — [”/ﬁ + 1\ contractions, with probability > 1/,.
L ———
. "t =L} ~\-C
Proof: (I-¢ PN Enal)2 —
ntl-

e Event &;: cut (4, B) survives contraction i
e Probability that (4, B) survives the first n — t contractions:

BTN ENM(Esl €D e TE 18 0aEuns)

n-Z w-3 w-1 . aciel g L)
= " U 2 Al
sAEl (B AL |
= — 2 T o e
W {u-Y) n (k-1) —— l\«s-‘— 2
>E 2%
2 Z
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Better Randomized Algorithm

Let’s simplify a bit:
 Pretend that n/\/f is an integer (for all n we will need it).

e Assume that a given min cut survives the first n — ”/\/E

contractions with probability > 1/,. =

/
contract(G, t):

* Starting with n-node graph G, perform n — t edge contractions

such that the new graph has t nodes. . «(1-4f =-shg -
h-v G,
—_ ._-——-06'z
mincut(G): G < -3 :— C .
;‘ L ﬁ__
1. X1 = mincut (contract(G n/\/_)), u\
— -
2. Xz mincut (contract(G n/\/f)),

3. return min{X{, X, };

—_—
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Success Probability
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mincut(G): D[ "‘l‘ %
«—g 1. X1 mmcut(contract(G n/v2 ))

.\% 2. X, = mincut (contract(G n/ \/_))

3. return min{X,, X,};

- (-g)

L—

P(n): probability that the above algorithm returns a min cut when
= applied to a graph with n nodes.

. . . | ?(!‘.)
* Probability that X; is a min cut = 2 \g
E

Recursion:

T2 | - (1ghelo (1-3FGE=H(-T8H§76) = 7E) - (7).
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Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least 1/log, n.

=_—
Proof (by induction on n):
2
n 1 n
— P(n)ZP(—)——-P(—) , P(2) =1
\ \ ]\/E‘ 4 J%—-‘ (Bﬂ‘ﬁ (w=2.')
\ 1
—_— — 2 2 — '::\ \/
L‘fz %t ACE) 87 bz
\ \ _ Lt(ﬂq‘" —%) hl lf/?h -3
R e I (O N TR g
Lf.ﬂp“"f"f(;_{ "‘l'Ij‘: ’\__4-['-'},[:?[
= L{&;"‘" L{/‘ZK 4 1 T ] ﬂu‘l; wp&,‘h
>0
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Running Time
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1. X; := mincut (contract(G,n/\/f));

2. X, = mincut (contract(G,n/ﬁ));

3. return min{X,, X,};

Recursion:

}

e T(n):time to apply algorithm to n-node graphs

e Recursive calls: 2T ("/ﬁ)

* Number of contractions to get to "/ﬁ nodes: O(n)

T(n) = 2T<

n

V2

)

+ 0(n%),
—
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T(2) = 0(1)
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Running Time
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Theorem: The running time of the recursive, randomized min cut

algorithm is 0 (n*logn).

Proof:

e Can be shown in the usual way, by induction onn

Remark:

e The running time is only by an O (log n)-factor slower than
the basic contraction algorithm.

 The success probability is exponentially better!

eghis O foru) b Wil ety
‘(_(:uu\wé \*\w&ﬂ @(V\Z ,Qmsgu\\
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Number of Minimum Cuts
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e Given a graph G, how many minimum cuts can there be?

e Or alternatively: If G has edge connectivity k, how many ways
are there to remove k edges to disconnect G?

* Note that the total number of cuts is large.
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Number of Minimum Cuts
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Example: Ring with n nodes

Algorithm Theory, WS 2013/14
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Minimum cut size: 2

Every two edges
induce a min cut

Number of edge pairs:

(&)

Are there graphs with
more min cuts?
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Number of Min Cuts
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Theorem: The number of minimum cuts of a graph is at most (2)

Proof:
e Assume there are s min cuts Ct n C5 .-:-.p’

e Fori€{l,..,s}, define event C;:

C; := {basic contraction algorithm returns min cut i}

* We know that fori € {1, ..., s}: P(C;) = 1/(;) ,/4 @

e Events Cy, ..., C are disjoint: ﬂ‘?v

s s YA B =PA)
\;P(Uei){p@é% A g
(5)
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