

Chapter 6 Randomization

Algorithm Theory WS 2013/14

Fabian Kuhn

Minimum Cut

Reminder: Given a graph G = (V, E), a cut is a partition (A, B) of V such that $V = A \cup B$, $A \cap B = \emptyset$, $A, B \neq \emptyset$

Size of the cut (A, B): # of edges crossing the cut

For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size $\underline{\lambda}(G)$)

Maximum-flow based algorithm:

- Fix s, compute min s-t-cut for all $t \neq s$
- $O(m \cdot \lambda(G)) = O(mn)$ per s-t cut
- Gives an $O(mn\lambda(G)) = O(mn^2)$ -algorithm

Best-known deterministic algorithm: $O(mn + n^2 \log n)$

Edge Contractions

 In the following, we consider <u>multi-graphs</u> that can have multiple edges (but no self-loops)

- Replace nodes u, v by new node w
- For all edges $\{u, x\}$ and $\{v, x\}$, add an edge $\{w, x\}$
 - Remove self-loops created at node w

Properties of Edge Contractions

Nodes:

- After contracting $\{u, v\}$, the new node represents u and v
- After a series of contractions, <u>each node</u> represents a <u>subset</u> of the original nodes

- Assume in the contracted graph, \underline{w} represents nodes $S_w \subset V$
- The edges of a node \underline{w} in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $(S_w, V \setminus S_w)$

Randomized Contraction Algorithm

Algorithm:

while there are ≥ 2 nodes do contract a uniformly random edge return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum cut with probability at least $1/O(n^2)$.

We will show this next.

Theorem: The random contraction algorithm can be implemented in time $O(n^2)$.

- There are n-2 contractions, each can be done in time O(n).
- You will show this in the exercises.

Contractions and Cuts

Lemma: If two original nodes $\underline{u}, \underline{v} \in V$ are merged into the same node of the contracted graph, there is a path connecting u and v in the original graph s.t. all edges on the path are contracted.

Proof:

- Contracting an edge $\{x, y\}$ merges the node sets represented by x and y and does not change any of the other node sets.
- The claim the follows by induction on the number of edge contractions.

w Su

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) cannot get smaller.

Proof:

- All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph G as follows:
 - For a node u of the contracted graph, let S_u be the set of original nodes that have been merged into u (the nodes that u represents)
 - Consider a cut $(\underline{A}, \underline{B})$ of the contracted graph
 - -(A',B') with

$$\underline{A'} \coloneqq \bigcup_{u \in A} S_u , \qquad B' \coloneqq \bigcup_{v \in B} S_v$$

is a cut of G.

- The edges crossing cut (A, B) are in one-to-one correspondence with the edges crossing cut (A', B').

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (A, B) of the input graph G if and only if it never contracts an edge crossing (A, B).

Proof:

- 1. If an edge crossing (A, B) is contracted, a pair of nodes $u \in A$, $v \in V$ is merged into the same node and the algorithm outputs a cut different from (A, B).
- 2. If no edge of (A, B) is contracted, no two nodes $u \in A$, $v \in B$ end up in the same contracted node because every path connecting u and v in G contains some edge crossing (A, B)

In the end there are only 2 sets \rightarrow output is (A, B)

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k, G has at least kn/2 edges.

Proof:

- Min cut has size $k \Longrightarrow$ all nodes have degree $\ge k$
 - A node v of degree < k gives a cut $(\{v\}, V \setminus \{v\})$ of size < k
- Number of edges $\underline{m} = \frac{1}{2} \cdot \sum_{v} \deg(v) \ge \frac{\sqrt{k}}{2}$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

Proof:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Before contraction i, there are n+1-i nodes \rightarrow and thus $\geq (n+1-i)k/2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$\frac{\frac{k}{(n+1-i)k}}{2} = \frac{2}{\underbrace{n+1-i}}.$$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

Proof:

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most $^2/_{n+1-i}$.
- Event \mathcal{E}_i : edge contracted in step i is **not** crossing (A, B)

$$P(E_i | E_i \cap \dots \cap E_{i-1}) \ge 1 - \frac{2}{n+1-i} = \frac{n-1-i}{n+1-i}$$

$$P(E_i | E_i \cap \dots \cap E_{i-1}) \ge 1$$

$$P(E_i | E_i \cap \dots \cap E_{i-1}) \ge 1$$

$$P(E_i | E_i \cap \dots \cap E_{i-1}) \ge 1$$

$$P(E_i | E_i \cap \dots \cap E_{i-1}) \ge 1$$

$$P(E_i | E_i \cap \dots \cap E_{i-1}) \ge 1$$

$$P(E_i | E_i \cap \dots \cap E_{i-1}) \ge 1$$

$$P(E_i | E_i \cap \dots \cap E_{i-1}) \ge 1$$

$$P(E_i | E_i \cap \dots \cap E_{i-1}) \ge 1$$

$$P(E_i | E_i \cap \dots \cap E_{i-1}) \ge 1$$

$$P(E_i | E_i \cap \dots \cap E_{i-1}) \ge 1$$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

Proof:

•
$$\mathbb{P}(\mathcal{E}_i|\mathcal{E}_1\cap\cdots\cap\mathcal{E}_{i-1})\geq 1-\frac{2}{n-i+1}=\frac{N-1-i}{N-1-i}$$

• $\mathbb{P}(\mathcal{E}_i | \mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{i-1}) \ge 1 - \frac{2}{n-i+1} = \frac{N-1-i}{N+1-i}$ • No edge crossing (A, B) contracted: event $\mathcal{E} = \bigcap_{i=1}^{n-2} \mathcal{E}_i$

$$P(\mathcal{E}) = P(\mathcal{E}_{1}) \cdot P(\mathcal{E}_{2} | \mathcal{E}_{1}) \cdot P(\mathcal{E}_{3} | \mathcal{E}_{1} n \mathcal{E}_{2}) \cdot \dots \cdot P(\mathcal{E}_{N-2} | \mathcal{E}_{1} n \dots n \mathcal{E}_{N-3})$$

$$> \frac{N^{2}}{N} \cdot \frac{N^{2}}{N^{2}} \cdot \frac{N^{$$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O(n^2 \log n)$ times, one of the $O(n^2 \log n)$ instances returns a min. cut w.h.p.

Proof:

• Probability to not get a minimum cut in $\widehat{c} \cdot \binom{n}{2} \cdot \ln n$ iterations:

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{\frac{c \cdot \binom{n}{2} \cdot \ln n}{2}} < e^{-c \ln n} = \frac{1}{n^c}$$

$$-\frac{1}{\binom{n}{2}} c \binom{n}{2} \ln n$$

Corollary: The contraction algorithm allows to compute a minimum cut in $O(n^4 \log n)$ time w.h.p.

• Each instance can be implemented in $O(n^2)$ time. (O(n) time per contraction)

Can We Do Better?

• Time $O(n^4 \log n)$ is not very spectacular, a simple max flow based implementation has time $O(n^4)$.

However, we will see that the contraction algorithm is nevertheless very interesting because:

- 1. The algorithm can be improved to beat every known deterministic algorithm.
- 1. It allows to obtain strong statements about the distribution of cuts in graphs.

Better Randomized Algorithm

Recall:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Throughout the algorithm, the edge connectivity is at least k and therefore each node has degree $\geq k$
- Before contraction i, there are n+1-i nodes and thus at least (n+1-i)k/2 edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$\frac{k}{\frac{(n+1-i)k}{2}} = \frac{2}{n+1-i}.$$

Improving the Contraction Algorithm

• For a specific min cut (A, B), if (A, B) survives the first i contractions,

$$\mathbb{P}(\text{edge crossing }(A,B) \text{ in contraction } i \neq 1) \leq \frac{2}{n-i \neq i}$$

- Observation: The probability only gets large for large i
- Idea: The early steps are much safer than the late steps.

 Maybe we can repeat the late steps more often than the early ones.

Lemma: A given min cut (A, B) of an n-node graph G survives the first $n - \left[\frac{n}{\sqrt{2}} + 1\right]$ contractions, with probability $\geq \frac{1}{2}$.

Proof: $P(\mathcal{E}_i \mid \mathcal{E}_i \land \dots \land \mathcal{E}_{i-i}) \geq \frac{N-1-i}{N+1-i}$

$$P(\mathcal{E}_{i} | \mathcal{E}_{i} \cap \dots \cap \mathcal{E}_{i-i}) \geq \frac{n-1-i}{n+1-i}$$

- Event \mathcal{E}_i : cut (A, B) survives contraction i
- Probability that (A, B) survives the first $\underline{n t}$ contractions:

$$\geqslant \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{t+1}{t+1} = \frac{t(t-1)}{u(u-1)}$$

$$=\frac{\sqrt{2}}{\sqrt{2}}+\sqrt{2}\sqrt{2}$$

$$=\frac{\sqrt{2}}{\sqrt{2}}+\sqrt{2}\sqrt{2}$$

$$=\frac{\sqrt{2}}{\sqrt{2}}+\sqrt{2}\sqrt{2}$$

$$=\frac{\sqrt{2}}{\sqrt{2}}+\sqrt{2}\sqrt{2}$$

$$=\frac{\sqrt{2}}{\sqrt{2}}+\sqrt{2}\sqrt{2}$$

$$=\frac{\sqrt{2}}{\sqrt{2}}+\sqrt{2}\sqrt{2}$$

$$=\frac{\sqrt{2}}{\sqrt{2}}+\sqrt{2}\sqrt{2}$$

Better Randomized Algorithm

Let's simplify a bit:

- Pretend that $n/\sqrt{2}$ is an integer (for all n we will need it).
- Assume that a given min cut survives the first $n n/\sqrt{2}$ contractions with probability $\geq 1/2$.

contract(G, t):

• Starting with n-node graph G, perform n-t edge contractions such that the new graph has t nodes.

mincut(G):

- 1. $X_1 := \min(\cot(G, n/\sqrt{2}));$
- 2. $X_2 := \min(\cot(G, n/\sqrt{2}));$
- 3. **return** min{ X_1, X_2 };

Success Probability

P(n): probability that the above algorithm returns a min cut when applied to a graph with n nodes.

• Probability that X_1 is a min cut $\geq \frac{1}{2} \cdot \mathcal{P}(\frac{n}{2})$

Recursion:

$$P(n) \ge 1 - (1 - q^2 = 1 - (1 - \frac{1}{2}P(\frac{n}{12})) = 1 - (1 - P(\frac{n}{2}) + \frac{1}{4}P(\frac{n}{12})) = P(\frac{n}{12}) - \frac{1}{4}[P(\frac{n}{12})]^2$$

Success Probability $\mathcal{L}_{\kappa}(\frac{\kappa}{2}) = \mathcal{L}_{\kappa} - \frac{1}{2}$

Theorem: The recursive randomized min cut algorithm returns a minimum cut with probability at least $1/\log_2 n$.

Proof (by induction on n):

$$P(n) \ge P\left(\frac{n}{\sqrt{2}}\right) - \frac{1}{4} \cdot P\left(\frac{n}{\sqrt{2}}\right)^{2}, \qquad P(2) = 1$$

$$P(n) \ge \frac{1}{\log^{n} \frac{1}{\sqrt{2}}} - \frac{1}{4} \cdot \frac{1}{\log^{n} \frac{1}{\sqrt{2}}} = \frac{P(2) \ge \frac{1}{\log_{2} 2}}{P(2) \ge \frac{1}{\log_{2} 2}} = 1$$

$$= \frac{1}{\log_{n} - \frac{1}{2}} - \frac{1}{4(\log_{n} - \frac{1}{2})} = \frac{4(\log_{n} - \frac{1}{2}) - 1}{4(\log_{n} - \frac{1}{2})} = \frac{4(\log_{n} - \frac{1}{2})}{4(\log_{n} - \frac{1}{2})} = \frac{1}{4(\log_{n} - \frac{1}{2})} = \frac{1}{\log_{n} + \frac{1}{\log_{n} - \frac{1}{2}}} = \frac{1}{\log_{n} + \frac{1}{2}} = \frac{1}{\log_{n}$$

Running Time

- 1. $X_1 := \min(\cot(G, n/\sqrt{2}));$
- 2. $X_2 := \min(\operatorname{contract}(G, n/\sqrt{2}));$ 3. **return** $\min\{X_1, X_2\};$

Recursion:

- T(n): time to apply algorithm to n-node graphs
- Recursive calls: $2T \binom{n}{\sqrt{2}}$
- Number of contractions to get to $n/\sqrt{2}$ nodes: O(n)

$$T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + O(n^2), \qquad T(2) = O(1)$$

Running Time

Theorem: The running time of the recursive, randomized min cut algorithm is $O(n^2 \log n)$.

Proof:

• Can be shown in the usual way, by induction on n

Remark:

- The running time is only by an $O(\log n)$ -factor slower than the basic contraction algorithm.
- The success probability is exponentially better!

repetitions O(log n) for high probability
uning Hue: O(n² log n)

Number of Minimum Cuts

- Given a graph G, how many minimum cuts can there be?
- Or alternatively: If G has edge connectivity k, how many ways are there to remove k edges to disconnect G?
- Note that the total number of cuts is large.

Number of Minimum Cuts

Example: Ring with *n* nodes

- Minimum cut size: 2
- Every two edges induce a min cut
- Number of edge pairs:

 Are there graphs with more min cuts?

Number of Min Cuts

Theorem: The number of minimum cuts of a graph is at most $\binom{n}{2}$.

Proof:

Assume there are s min cuts

$$C_i \cap C_j = \emptyset$$

• For $i \in \{1, ..., s\}$, define event C_i :

 $C_i := \{ \text{basic contraction algorithm returns min cut } i \}$

- We know that for $i \in \{1, ..., s\}$: $\underline{\mathbb{P}(\mathcal{C}_i)} \ge 1/\binom{n}{2}$
- A B

• Events $C_1, ..., C_s$ are disjoint:

