

Chapter 7 Approximation Algorithms

Algorithm Theory WS 2013/14

Fabian Kuhn

Knapsack

- n items 1, ..., n, each item has weight $\underline{w_i} > 0$ and value $\underline{v_i} > 0$
- Knapsack (bag) of capacity <u>W</u>
- Goal: pack items into knapsack such that total weight is at most
 W and total value is maximized:

$$\max \sum_{i \in S} v_i$$
s. t. $S \subseteq \{1, ..., n\}$ and
$$\sum_{i \in S} w_i \le W$$

• E.g.: jobs of length w_i and value v_i , server available for W time units, try to execute a set of jobs that maximizes the total value

Knapsack: Dynamic Programming Alg.

Dynamic programming:

• If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time O(nW)

If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $Q(n^2V)$, where V is the max. value.

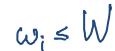
Problems:

- If \underline{W} and \underline{Y} are large, the algorithms are not polynomial in n
- If the values or weights are not integers, things are even worse (and in general, the algorithms cannot even be applied at all)

Idea:

 Can we adapt one of the algorithms to at least compute an approximate solution?

Approximation Algorithm



- The algorithm has a parameter $\varepsilon > 0$
- We assume that each item alone fits into the knapsack
- We solve the problem with integer values $\widehat{v_i}$ and weights $\underline{w_i}$ using dynamic programming in time $O(n^2 \cdot \widehat{V})$

Theorem: The described algorithm runs in time $O(n^3/\varepsilon)$.

Proof:

$$\widehat{V} = \max_{1 \le i \le n} \widehat{v_i} = \max_{1 \le i \le n} \left[\frac{v_i n}{\varepsilon V} \right] = \left[\frac{\mathsf{V} n}{\varepsilon \mathsf{V}} \right] = \left[\frac{n}{\varepsilon} \right]$$

Approximation Algorithm

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at most $1 + \varepsilon$.

Proof:

Define the set of all feasible solutions (subsets of [n])

- $\hat{v}(S)$: value of solution S w.r.t. values $\hat{v}_1, \hat{v}_2, ...$
- Let S^* be an optimal solution and \widehat{S} be the solution found by the approximation algorithm.
 - $-\hat{S}$ is the optimal solution w.r.t. values \hat{v}_i
- Weights are not changed at all, hence, \hat{S} is a feasible solution

Approximation Algorithm

Theorem: The approximation algorithm computes a feasible solution with approximation ratio at most $1 + \varepsilon$.

Proof:

We have

$$\underbrace{\forall \leq v(S^*)}_{i \in S^*} = \sum_{i \in S^*} v_i = \max_{S \in S} \sum_{i \in S} v_i,$$

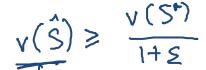
$$\hat{\mathbf{v}} \leq \hat{\mathbf{v}}(\hat{\mathbf{S}}) = \sum_{i \in \hat{\mathbf{S}}} \hat{\mathbf{v}}_i = \max_{\mathbf{S} \in \mathcal{S}} \sum_{\mathbf{S} \in \mathcal{S}} \hat{\mathbf{v}}_i = \max_{\mathbf{S} \in \mathcal{S}} \hat{\mathbf{v}}_i^{(\mathbf{S})}$$

Because every item fits into the knapsack, we have

$$\forall i \in \{1, \dots, n\}: \ v_i \leq V \leq \sum_{j \in S^*} v_j$$

• Also:
$$\hat{v}_i = \left\lceil \frac{v_i n}{\varepsilon V} \right\rceil \implies \underbrace{v_i \leq \frac{\varepsilon V}{n} \cdot \hat{v}_i}_{i, \text{ and }} \hat{v}_i \leq \frac{v_i n}{\varepsilon V} + 1$$

Approximation Algorithm _v(ŝ) ≥



Theorem: The approximation algorithm computes a feasible solution with approximation ratio at most $1 + \varepsilon$.

Proof:

We have

$$\underline{\underline{v(S^*)}} = \sum_{i \in S^*} v_i \le \frac{\varepsilon V}{n} \cdot \sum_{i \in S^*} \hat{v}_i \le \frac{\varepsilon V}{n} \cdot \sum_{i \in \hat{S}} \hat{v}_i \le \frac{\varepsilon V}{n} \cdot \sum_{i \in \hat{S}} \left(1 + \frac{v_i n}{\varepsilon V}\right)$$

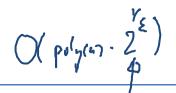
Therefore

$$v(S^*) = \sum_{i \in S^*} v_i \le \frac{\varepsilon V}{n} |\hat{S}| + \sum_{i \in \hat{S}} v_i \le \varepsilon V + v(\hat{S})$$

• V is a lower bound on both solutions $v(S^*)$ and $v(\hat{S})$:

$$v(S^*) \leq (1+\varepsilon)v(\widehat{S})$$

Approximation Schemes



- For every parameter $\varepsilon > 0$, the knapsack algorithm computes a $(1 + \varepsilon)$ -approximation in time $O(n^3/\varepsilon)$.
- For every fixed ε , we therefore get a polynomial time approximation algorithm
- An algorithm that computes an $(1 + \varepsilon)$ -approximation for every $\varepsilon > 0$ is called an approximation scheme.
- If the running time is polynomial for every fixed ε , we say that the algorithm is a polynomial time approximation scheme (PTAS)
- If the running time is also polynomial in $1/\varepsilon$, the algorithm is a fully polynomial time approximation scheme (FPTAS)
- Thus, the described alg. is an FPTAS for the knapsack problem