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Knapsack
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e nitemsl,...,n, each item has weight_sz> 0 and valuev; > 0
* Knapsack (bag) of capacity W

e Goal: pack items into knapsack such that total weight is at most
W and total value is maximized:

e E.g.:jobs of length w; and value v;, server available for W time
units, try to execute a set of jobs that maximizes the total value
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Knapsack: Dynamic Programming Alg.
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Dynamic programming: u\’_;!~
e |[f all item weights w; are integers, using dynamic programming,
— —_—
the knapsack problem can be solved in time O (nl/)

e |f all values v; are integers, there is another dynamic progr.
algorithm that runs in time O (n?V ), where V' is the max. value.

Problems:
e IfIWW and]/ are large, the algorithms are not polynomial in n

e |f the values or weights are not integers, things are even worse
(and in general, the algorithms cannot even be applied at all)

Idea:

 Can we adapt one of the algorithms to at least compute an
approximate solution?
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e The algorithm has a parameter e > 0

e We assume that each item alone fits into the knapsack

. U :
» We define: Q=7 o /
VPN Vi 7,
—= I = maxv;, Vi:v; == [— V := max 7;
1<i<n E - 1<i<n

 We solve the problem with integer values U; and weights wi

using dynamic programming in time O (n? ;/)«—

Theorem: The described algorithm runs in time 0(n3/¢).

=

Proof:

7 = s 5 = o 2] = [52) -
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Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at most 1 + &.

Proof:
e Define the set of all feasible solutions (subsets of [n])

AS/S*éé::{%‘E{l,...,n}: WLSW}

es

: 2 Q= £V,
* - v(S): value of solution S w.r.t. values vy, vy, ... NOIm e

D(S): value of solution S w.r.t. values 74, D, ...

. Let@ be an optimal solution and@ae the solution found by
the approximation algorithm.

— Sis the optimal solution w.r.t. values §;

e Weights are not changed at all, hence, S is a feasible solution
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Approximation Algorithm

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at most 1 + «.

Proof: war V()
e We have /5
\ < p(S* =2v—maXZv-
(5= ) vi=max » v,
IES* = €S
B A R L (S)
— — = wax V
NERORDIES = DR A
ieS SES

e Because every item fits into the knapsack, we have
Vi € {1,...,7’1}: Vi <V < z Vj

jES*
vin
e Also: vl—[ }=> vlS7 v, andvl_LV+1
vz & )
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Approximation Algorithm ()=
o

\ts =R
Theorem: The approximation algorithm comp a feasible
solution with approxir/nation ratio at most 1 + ¢. Sv;
! n «S
Proof: j 9 H = 4(S)
° d— L ____ad
We have o l
eV 4 &V vin
=Y u=L oL T <L Y (142
—_— n . n y n y 474
ies* iES* ieS i€S
e Therefore W(8) 2V
eV ], A ¢ .
v(S*)zZvi —_ S\|+ZUiS£V+v(S)
—_— n ¢ —

IES* ieS

~—

e Visalower bound on both solutions v(S™) and v(S‘):

v(§*) < 1+ v(S)

e ————
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Approximation Schemes o(f.fym-g:)

For every parameter € > 0, the knapsack algorithm computes a
(1 + €)-approximation in time 0(n°/¢).

For every fixed €, we therefore get a polynomial time
approximation algorithm

An algorithm that computes an (1 + &)-approximation for every
€ > 0 is called an approximation scheme.

If the running time is polynomial for every fixed &, we say that
the algorithm is a polynomial time approximation scheme (PTAS)

If the running time is also polynomial in 1/¢, the algorithm is a
fully polynomial time approximation scheme (FPTAS)

Thus, the described alg. is an FPTAS for the knapsack problem

Algorithm Theory, WS 2013/14 Fabian Kuhn 8



