

Chapter 8 Online Algorithms

Algorithm Theory WS 2013/14

Fabian Kuhn

Online Computations

- Sometimes, an algorithm has to start processing the input before the complete input is known
- For example, when storing data in a data structure, the sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole input before computing the output.

- Some problems are inherently online
 - Especially when real-time requests have to be processed over a significant period of time

Competitive Ratio

- Let's again consider optimization problems
 - For simplicity, assume, we have a minimization problem

Optimal offline solution OPT(I):

 Best objective value that an <u>offline algorithm</u> can achieve for a given input sequence I

Online solution $\underline{ALG}(I)$:

Objective value achieved by an online algorithm ALG on I

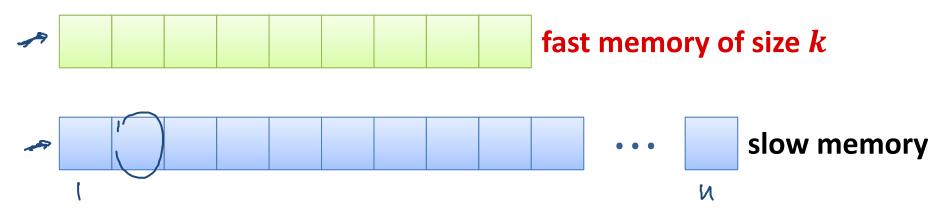
Competitive Ratio: An algorithm has competitive ratio $c \ge 1$ if

$$\overline{ALG(I)} \leq c \cdot OPT(I) + \underline{\alpha}.$$

• If $\alpha \leq 0$, we say that ALG is strictly *c*-competitive.

Paging Algorithm

Assume a simple memory hierarchy:



If a memory page has to be accessed:

- Page in fast memory (hit): take page from there
- Page not fast memory (miss): leads to a page fault
- Page fault: the page is loaded into the fast memory and some page has to be evicted from the fast memory
- Paging algorithm: decides which page to evict
- Classical online problem: we don't know the future accesses

Paging Strategies

Least Recently Used (LRU):

Replace the page that hasn't been used for the longest time

First In First Out (FIFO):

Replace the page that has been in the fast memory longest

Last In First Out (LIFO):

Replace the page most recently moved to fast memory

Least Frequently Used (LFU):

Replace the page that has been used the least

Longest Forward Distance (LFD):

- Replace the page whose next request is latest (in the future)
- LFD is **not** an online strategy!

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

- For contradiction, assume that LFD is not optimal
- Then there exists a finite input sequence σ on which LFD is not optimal (assume that the length of σ is $|\sigma| = \underline{n}$)
- Let OPT be an optimal solution for σ such that
 - OPT processes requests 1, ..., i in exactly the same way as LFD
 - OPT processes request i + 1 differently than LFD
 - Any other optimal strategy processes one of the first i+1 requests differently than LDF
- Hence, OPT is the optimal solution that behaves in the same way as LFD for as long as possible \rightarrow we have $\underline{i} < n$
- Goal: Construct $\underbrace{\mathsf{OPT}'}$ that is identical with LFD for req. $1, \dots, \underbrace{i+1}$

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 1: Request i + 1 does not lead to a page fault

- LFD does not change the content of the fast memory
- OPT behaves differently than LFD
 - → OPT replaces some page in the fast memory
 - As up to request i + i, both algorithms behave in the same way, they also have the same fast memory content
 - OPT therefore does not require the new page for request i+1
 - Hence, OPT can also load that page later (without extra cost) \rightarrow OPT'

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 2: Request i + 1 does lead to a page fault

- LFD and OPT move the same page into the fast memory, but they evict different pages
 - If OPT loads more than one page, all pages that are not required for request i+1 can also be loaded later
- Say, LFD evicts page \underline{p} and OPT evicts page \underline{p}'
- By the definition of LFD, p' is required again before page p

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof: Case 2: Request i+1 does lead to a page fault i+1 $\ell' < \ell$: OPT evicts p j': next req. for p'LFD evicts pOPT evicts p'

- a) OPT keeps \underline{p} in fast memory until request ℓ
 - Evict p at request i+1, keep p' instead and load p (instead of p') back into the fast memory at request ℓ
- b) OPT evicts p at request $\ell' < \ell$
 - Evict p at request i+1 and p' at request ℓ' (switch evictions of p and p')

Phase Partition

We partition a given request sequence σ into phases as follows:

- Phase 0: empty sequence
- Phase i: maximal sequence that immediately follows phase i-1 and contains at most k distinct page requests

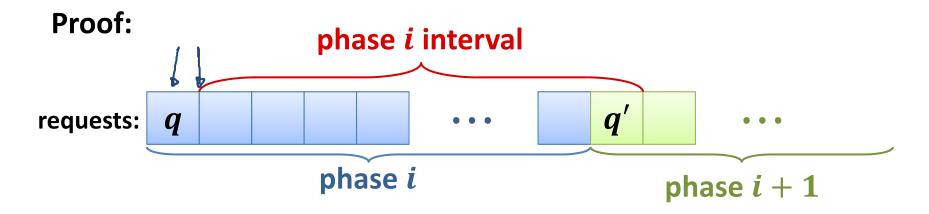
Example sequence $(\underline{k} = 4)$:

Phase *i* **Interval:** interval starting with the second request of phase i and ending with the first request of phase i+1

• If the last phase is phase p, phase-interval i is defined for $i=1,\ldots,p-1$

Optimal Algorithm

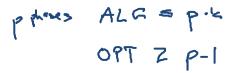
Lemma: Algorithm <u>LFD</u> has at least one page fault in each phase i interval (for i = 1, ..., p - 1, where p is the number of phases).



- q is in fast memory after first request of phase i
- Number of distinct requests in phase i: k
- By maximality of phase i: q' does not occur in phase i
- Number of distinct requests $\neq q$ in phase interval i: k

→ at least one page fault

LRU and FIFO Algorithms



Lemma: Algorithm LFD has at least one page fault in each phase interval i (for i = 1, ..., p - 1, where p is the number of phases).

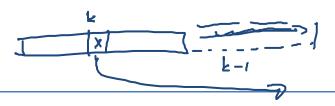
Corollary: The number of page faults of an optimal offline algorithm is at least p-1, where p is the number of phases

Theorem: The LRU and the FIFO algorithms both have a competitive ratio of at most k.

Proof:

- In phase i only pages from phases before phase i are evicted from the fast memory $\rightarrow \leq k$ page faults per phase
 - As long as not all k pages from phase i have been requested, the least recently used and the first inserted are from phases before i
 - When all k pages have been requested, the k pages of phase i are in fast memory and there are no more page faults in phase i

Lower Bound



Theorem: Even if the slow memory contains only $\underline{k+1}$ pages, any deterministic algorithm has competitive ratio at least k.

Proof:

- Consider some given deterministic algorithm ALG
- Because ALG is deterministic, the content of the fast memory after the first i requests is determined by the first i requests.
- Construct a request sequence inductively as follows:
 - Assume some initial sow memory content
 - The $(i+1)^{st}$ request is for the page which is not in fast memory after the first i requests (throughout we only use k+1 different pages)
- There is a page fault for every request
- OPT has a page fault at most every k requests
 - There is always a page that is not required for the next k-1 requests

Randomized Algorithms

- We have seen that deterministic paging algorithms cannot be better than k-competitive
- Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has competitive ratio $c \ge 1$ if for all inputs I,

$$\mathbb{E}[ALG(I)] \leq c \cdot \underline{OPT(I)} + \alpha.$$

• If $\alpha \leq 0$, we say that ALG is strictly *c*-competitive.

Adversaries

 For randomized algorithm, we need to distinguish between different kinds of adversaries (providing the input)

Oblivious Adversary:

- Has to determine the complete input sequence before the algorithm starts
 - The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:

- The adversary knows how the algorithm reacted to earlier inputs
- online adaptive: adversary has no access to the randomness used to react to the current input
 - offline adaptive: adversary knows the random bits used by the algorithm to serve the current input

Lower Bound

The adversaries can be ordered according to their strength oblivious < online adaptive < offline adaptive

- An algorithm that works with an <u>adaptive</u> adversary also works with an oblivious one
- A lower bound that holds against an oblivious adversary also holds for the other 2

• ...

Theorem: No randomized paging algorithm can be better than k-competitive against an online (or offline) adaptive adversary.

Proof: The same proof as for deterministic algorithms works.

Are there better algorithms with an oblivious adversary?