)

Chapter 9
Parallel Algorithms

Algorithm Theory
WS 2013/14

Fabian Kuhn

UNI

FREIBURG

UNI

Parallel Computations

FREIBURG

T,: time to perform comp. with p procs

— A

e T,:work (total # operations) 4
-

~
=\

l

e

b

— Time when doing the
computation sequentially

e T,:critical path / span

— Time when parallelizing as ® ®
much as possible

e Lower Bounds:

Algorithm Theory, WS 2013/14 Fabian Kuhn 2

UNI

Brent’s Theorem

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be

performed in time
r(CT.)
T, < + T .
p

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors p = 0(T, /Tw), it is
possible to achieve a linear speed-up. = o

Algorithm Theory, WS 2013/14 Fabian Kuhn 3

PRAM

UNI
I

FREIBURG

Back to the PRAM:
e Shared random access memory, synchronous computation steps

e The PRAM model comes in variants...

EREW (exclusive read, exclusive write):
e Concurrent memory access by multiple processors is not allowed

e |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
e Reading the same memory cell concurrently is OK

e Two concurrent writes to the same cell lead to unspecified
behavior

e This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2013/14 Fabian Kuhn 4

PRAM

UNI

FREIBURG

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
e Concurrent reads and writes are both OK

e Behavior of concurrent writes has to specified
— Weak CRCW: concurrent write only OK if all processors write 0

— Common-mode CRCW: all processors need to write the same value
— Arbitrary-winner CRCW: adversary picks one of the values
— Priority CRCW: value of processor with highest ID is written

— Strong CRCW: largest (or smallest) value is written

—

e The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong

Algorithm Theory, WS 2013/14 Fabian Kuhn 5

Some Relations Between PRAM Models _

Theorem: A parallel computation that can be performed in time ¢,
using p processors on a strong CRCW machine, can also be
performed in time O(t log p) using p processors on an EREW
machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

Theorem: A parallel computation that can be performed in time ¢,
using p probabilistic processors on a strong CRCW machine, can
also be performed in expected time O(t logp) using O(p/logp)
processors on an arbitrary-winner CRCW machine.

e The same simulation turns out more efficient in this case

Algorithm Theory, WS 2013/14 Fabian Kuhn 6

UNI
FREIBURG

Some Relations Between PRAM Models _

FRE:BURG

UNI

Theorem: A computation that can be performed in time.t, using p
processors on a strong CRCW machine, can also be performed in_
time O(t) using 0522) processors on a weak CRCW machine

Proof:

e Strong: largest value wins, weak: only concurrently writing 0 is OK
Stwulake | round o‘% o Q&mwd CRCW PRAM ou a weat CRLCW TPRAM

liqsc,v,e '\‘(.Q Sl(‘o“& thw wa, Qg A} --./? | - ?(
addifpual Qroessess 9&2 &w Q\msl ganr Gy, ©HED /.../?;3

a ddi Boual wAQwissy cels
—-’b@n all Iefl,--./fi ‘ -V\I;) Q. (wbaCred 0)
* by

'\(onc. U wauks Y0 wﬁ(e\/imwwl <l ¢

l——:D :E‘L:: \/ O{"":C.) \)‘;‘-CX

—

Algorithm Theory, WS 2013/14 Fabian Kuhn 7

Some Relations Between PRAM Models _

FRE:BURG

UNI

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in
time O(t) using Og) processors on a weak CRCW machine

Proof:
e Strong: largest value wins, weak: only concurrently writing 0 is OK
%3 C,(Q&QS/ &‘.l 3) ., qs) V;/V3 (R‘;S'AuQ {<5)
e .
lg g;‘-‘gr):[O.\AA a;.-.-q‘) ‘w’sﬁv\
{2V, Yan §.:=0 l

alse !%-) =0

—

-

Algorithm Theory, WS 2013/14 Fabian Kuhn 8

Computing the Maximum

UNI
FREIBURG

Observation: On a strong CRCW machine, the maximum of an
values can be computed in O(1) time using n processors

e Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum ofﬂ integers
between 1 and \/n can be computed in time 0(1) using O(n) proc.

Proof:

* We have yn memory cells f;, ..., f 5 for the possible values

Initialize all f; == 1=—

For the n values x4, ..., x,,, processor j sets ZE! =

e—

— Since only zeroes are written, concurrent writes are OK

Now, f; = 0 iff value_i occurs at least once -
Strong CRCW machine: max. value in time Q(1) w. O(y/n) proc.
e Weak CRCW machine: time O(1) using O(n) proc. (prev. lemma)

Algorithm Theory, WS 2013/14 Fabian Kuhn 9

Computing the Maximum

UNI
I

FREIBURG

Theorem: If each value can be represented using O (log n) bits, the
maximum of n (integer) values can be computed in time O(1) using
O(n) processors on a weak CRCW machine.

' iy
&:_ 2
Proof: o a—— _
. 10g2 n . . V/ V
e First look at highest order bits ———— _

e The maximum value also has the maximum among those bits

* There are only \/n possibilities for these bits

log, n

* max. of highest order bits can be computed inO(1) time

log, n

e For those with largest highest order bits, continue with

log,n, .. —

bits, ...

next block of

Algorithm Theory, WS 2013/14 Fabian Kuhn 10

Prefix Sums 0@a = o

UNI
FREIBURG

/

b
e The following works for any associative binary operator @:

associativity: (a®b)Dc = a®(bDc) Sza®.. @a

————

¢t

All-Prefix-Sums: Given a sequence of n values a4,4.., a,, the all-
prefix-sums operation w.r.t. @ returns the sequence of prefix sums:

S1,S2,...,S, = aq,a1Da,,a;Da,Da,, ..., a,D - Da,

e Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: a4, ...,ag = 3,1,7,0,4,1,6, 3
S, -, Sg = 21 W\ WIS, 2 2

Algorithm Theory, WS 2013/14 Fabian Kuhn 11

Computing the Sum

UNI
I

FREIBURG

e Let'sfirstlookats, =a,®a,d - Da,

e Parallelize ummg Lgﬁﬁd’ér]ry tree:

/\

rle /+\ /+\
A, A, Oy &

Breud's o,
el of epooos =
I Ts T
S -?—-}./Qvﬁu
/ \ =0 ¢= ®(“/xe‘-3
m'_]‘; O(u()o()v\\
7 =
ARN Va \
G A, A A,

Algorithm Theory, WS 2013/14

Fabian Kuhn

12

Computing the Sum

UNI

Lemma: The sum s,, = a,@Da, D --- Da,, can be computed in
time O(logn) on an EREW PRAM. The total number of
operations (total work) is O (n).

Proof:

Corollary: The sum s,, can be computed in time O(logn) using
O(n/logn) processors on an EREW PRAM.

Proof:

e Follows from Brent’s theorem (T; = O0(n), T, = O(logn))

Algorithm Theory, WS 2013/14 Fabian Kuhn 13

FREIBURG

Getting The Prefix Sums

UNI
FREIBURG

e |nstead of computing the sequence s4, S5, ..., S, let’s compute
71, o Ty =Q, 1,52y =+ » Sn—1 (0: neutral element w.r.t. @)

Ty, .., =0,a,a,Da,,..,a;D - Da,,_1

e Together with Sp this gives all prefix sums
e Prefixsumr; =s;_1 =a;D--Da;_1

——

©
© ©

©) ©. ©) ©

@ (@ @ (@ @ (& @ (&
@@@@@@@@@@@@ oy | ey @

r
My Tia

Algorithm Theory, WS 2013/14 Fabian Kuhn (Sl?’)

Getting The Prefix Sums

UNI
I

FREIBURG

Claim: The prefix sumr; = a;@® --- Da;_4 is the sum of all the
leaves in the left sub-tree of each ancestor u of the leaf v

e

containing a; such that v is in the right sub-tree of u.

Algorithm Theory, WS 2013/14 Fabian Kuhn 15

Computing The Prefix Sums

UNI
I

FREIBURG

For each node v of the binary tree, define r(v) as follows:

0‘ r(v) is the sum of the values a; at the leaves in all the left sub-
trees of ancestors u of v such that v is in the right sub-tree of u.

For a leaf node v holding value a;: r(v) = r; = s;_4

For the root node: r(root) = 0

/
Forfll other nodes v: /é\ @K v is the right child of u:
(u has left child w)

<

Yy is the left child of u:

=r(u) +S
r(v) =r(u) 1;(_17) 1&) -

(S: sum of values in
sub-tree of w)

Algorithm Theory, WS 2013/14 Fabian Kuhn 16

Computing The Prefix Sums

UNI
FREIBURG

* leaf node v holding value a;: r(v) =1; = 5;_4

e root node: r(root) =0 W)
* Node v is the left child of u: r(v) = r(u) S/R

Itv) 2wt &
* Node v is the right child of u: r(v) = r_(_g) —

— Where: S = sum of values in left sub-tree of u

Algorithm to compute values r(v):

1. Compute sum of values in each sub-tree (bottom-up)
— Can be done in parallel time O (logn) with O(n) total work

2. Compute values r(v) top-down from root to leaves:

— To compute the value r(v), only r(u) of the parent u and the sum of the
left sibling (if v is a right child) are needed

— Can be done in parallel time O (logn) with O (n) total work

Algorithm Theory, WS 2013/14 Fabian Kuhn 17

Example

UNI
FREIBURG

1. Compute sums of all sub-trees
— Bottom-up (level-wise in parallel, starting at the leaves)
2. Compute values r(v)

— Top-down (starting at the root)

0
52)
Su

0 10 2

34
@ 0.“0 @ @ 21+13

Fe— =

11 10 19 21 30 34 43

0

VR ONNO OO (2)

® ©@0 @ © 0@ 0 WO & ®O 600 @
0 3 1

T 1

21

11 10 16 19 21 21 29 30 31 34 38 43 50

1'.,;’51
Algorithm Theory, WS 2013/14 Fabian Kuhn 18

\

Computing Prefix Sums

|
FRE:BURG

UNI

Theorem: Given a sequence a4y, ..., a, of n values, all prefix sums
S; = a1 - @Da; (for1 < i < n)can be computed in time O(logn)
using O(n/logn) processors on an EREW PRAM.

Proof:

e Computing the sums of all sub-trees can be done in parallel in
time 0(logn) using O(n) total operations.

e The same is true for the top-down step to compute the r(v)
e The theorem then follows from Brent’s theorem:

T
I, =0(m), T =0(ogn) = T,<T, _|_?1

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory, WS 2013/14 Fabian Kuhn 19

Parallel Quicksort

UNI
I

FREIBURG

e Key challenge: parallelize partition pivot

5|14/18 8 |19(21| 3 |1 |25/17|11| 4 (20{10(26| 2 | 9 (13|23 |16

partition

5|14/8 /3|1 (11|4 (10| 2 | 9 (13|16(18|19(21/25|17|20|26|23

— E—

e How can we do this in parallel?

* For now, let’s just care about the values < pivot
e What are their new positions

Algorithm Theory, WS 2013/14 Fabian Kuhn 20

UNI

Using Prefix Sums

FREIBURG

e Goal: Determine positions of values < pivot after partitionpivot

5|14/18 8 |19(21| 3 | 1 |25/17|11| 4 (20{10(26| 2 | 9 (13|23 |16

{
— 17/0/,1y0/0(12(2/0/0(1(2(0(1/0(1(1(1(01

g | —

5|56 7889 (10{11/11/12

@ partition

5/14/8 |3 |1(11|4 10/ 2 |9 (13/16/18(19|21|25(17|20|26|23

—
——

ee——

Algorithm Theory, WS 2013/14 Fabian Kuhn 21

Partition Using Prefix Sums

e The positions of the entries > pivot can be determined in the

same way
e Prefixsums:T; =0(n), T, = 0(logn)
* Remaining computations: T; = 0(n), T, = 0(1)

e,

* Overall: T; = 0(n), T, = 0(logn)

Lemma: The partitioning of quicksort can be carried out in
n

parallel in time O (logn) using O () processors.

logn
Proof:

e By Brent’s theorem: T, < % + Tw

Algorithm Theory, WS 2013/14 Fabian Kuhn

22

UNI
I

FREIBURG

Applying to Quicksort

UNI
FREIBURG

Theorem: On an EREW PRAM, using p processors, randomized
quicksort can be executed in time T, (in expectation and with
high probability), where

nlogn
Tp=0(5 +log2n>.

D —

Proof:
b T2 O(w), TarQlyn) == O(ﬂ@(f W) Nchrsies lenefs
i (voud. guicksost)

6'_'_9:;(’ : T__., O(u ‘Qwﬂq) 7:0=© Cﬂ’f"‘)

Remark:

e We get optimal (linear) speed-up w.r.t. to the sequential
algorithm for all p = O(n/logn).

e ——— R

Algorithm Theory, WS 2013/14 Fabian Kuhn 23

Other Applications of Prefix Sums

UNI
I

FREIBURG

Prefix sums are a very powerful primitive to design parallel

algorithms.

— Particularly also by using other operators than +

Example Applications:

Lexical comparison of strings
Add multi-precision numbers
Evaluate polynomials

Solve recurrences

Radix sort / quick sort

Search for regular expressions

Implement some tree operations

Algorithm Theory, WS 2013/14 Fabian Kuhn

24

