

Chapter 9 Parallel Algorithms

Algorithm Theory WS 2013/14

Fabian Kuhn

Parallel Computations

 T_p : time to perform comp. with p procs

- T_1 : work (total # operations)
 - Time when doing the computation sequentially
- T_{∞} : critical path / span
 - Time when parallelizing as much as possible
- **Lower Bounds:**

$$T_p \geq \frac{T_1}{p}, \qquad T_p \geq T_{\infty}$$

$$T_{\infty}=5$$

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be

performed in time

$$T_p \leq \frac{T_1 - T_{\infty}}{p} + T_{\infty}.$$

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors $p = O(T_1/T_{\infty})$, it is possible to achieve a linear speed-up.

PRAM

Back to the PRAM:

- Shared random access memory, synchronous computation steps
- The PRAM model comes in variants...

EREW (exclusive read, exclusive write):

- Concurrent memory access by multiple processors is not allowed
- If two or more processors try to read from or write to the same memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):

- Reading the same memory cell concurrently is OK
- Two concurrent writes to the same cell lead to unspecified behavior
- This is the first variant that was considered (already in the 70s)

PRAM

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):

- Concurrent reads and writes are both OK
- Behavior of concurrent writes has to specified
 - Weak CRCW: concurrent write only OK if all processors write 0
 - Common-mode CRCW: all processors need to write the same value
 - Arbitrary-winner CRCW: adversary picks one of the values
 - Priority CRCW: value of processor with highest ID is written
 - Strong CRCW: largest (or smallest) value is written
- The given models are ordered in strength:

weak \leq common-mode \leq arbitrary-winner \leq priority \leq strong

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time t, using p processors on a strong CRCW machine, can also be performed in time $O(t \log p)$ using p processors on an EREW machine.

• Each (parallel) step on the CRCW machine can be simulated by $O(\log p)$ steps on an EREW machine

Theorem: A parallel computation that can be performed in time t, using p probabilistic processors on a strong CRCW machine, can also be performed in expected time $O(t \log p)$ using $O(p/\log p)$ processors on an arbitrary-winner CRCW machine.

The same simulation turns out more efficient in this case

Some Relations Between PRAM Models

Theorem: A computation that can be performed in time t, using p processors on a strong CRCW machine, can also be performed in time O(t) using $O(p^2)$ processors on a weak CRCW machine

Proof:

Strong: largest value wins, weak: only concurrently writing 0 is OK simulate I sound of a strong CRCW PRAM on a weak CRCW PRAM poor of the strong CRCW m. are 1,--,p
additional processors: q; for every pair (i,j), i,jej(,...,p)
additional memory rells:

- for all iell,--,p}: fi, Vi, a; (initialized to 0)

if proc. i wants to write memory cell c

It i=1, a;=c, Vi:=x

Some Relations Between PRAM Models

Theorem: A computation that can be performed in time t, using p processors on a strong CRCW machine, can also be performed in time O(t) using $O(\underline{p}^2)$ processors on a weak CRCW machine

Proof:

• Strong: largest value wins, weak: only concurrently writing 0 is OK

Gir checks,
$$f_i, f_j, a_i, a_j, v_i, v_j$$
 (assume $i < j$)

if $f_i = f_j = 1$ and $a_i = a_j$ then

if $v_j \ge v_i$ then $f_i := 0$

else $f_j := 0$

Computing the Maximum

Observation: On a strong CRCW machine, the maximum of a n values can be computed in O(1) time using n processors

Each value is concurrently written to the same memory cell

Lemma: On a <u>weak CRCW</u> machine, the maximum of n integers between 1 and \sqrt{n} can be computed in time O(1) using O(n) proc.

Proof:

- We have \sqrt{n} memory cells $\underline{f_1}$, ..., $\underline{f_{\sqrt{n}}}$ for the possible values
- Initialize all $f_i := 1$
- For the n values $\underline{x_1, ..., x_n}$, processor j sets $\underline{f_{x_j}} \coloneqq \underline{0}$
 - Since only zeroes are written, concurrent writes are OK
- Now, $f_i = \underline{0}$ iff value \underline{i} occurs at least once
- Strong CRCW machine: max. value in time Q(1) w. $O(\sqrt{n})$ proc.
- Weak CRCW machine: time O(1) using O(n) proc. (prev. lemma)

Computing the Maximum

Theorem: If each value can be represented using $O(\log n)$ bits, the maximum of n (integer) values can be computed in time O(1) using O(n) processors on a weak CRCW machine.

Proof:

- First look at $\frac{\log_2 n}{2}$ highest order bits
- The maximum value also has the maximum among those bits
- There are only \sqrt{n} possibilities for these bits
- max. of $\frac{\log_2 n}{2}$ highest order bits can be computed in $\mathcal{O}(1)$ time
- For those with largest $\frac{\log_2 n}{2}$ highest order bits, continue with next block of $\frac{\log_2 n}{2}$ bits, ...

Prefix Sums

The following works for any associative binary operator \oplus :

associativity:
$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$

$$S_i = \alpha_i \oplus ... \oplus \alpha_i$$

All-Prefix-Sums: Given a sequence of n values a_1, \dots, a_n , the allprefix-sums operation w.r.t. \oplus returns the sequence of prefix sums:

$$s_1, s_2, \dots, s_n = a_1, a_1 \oplus a_2, a_1 \oplus a_2 \oplus a_3, \dots, a_1 \oplus \dots \oplus a_n$$

Can be computed efficiently in parallel and turns out to be an important building block for designing parallel algorithms

Example: Operator: +, input: $a_1, ..., a_8 = 3, 1, 7, 0, 4, 1, 6, 3$

$$s_1, ..., s_8 = 3, 4, 11, 11, 14, 15, 21, 24$$

Computing the Sum

- Let's first look at $s_n = a_1 \oplus a_2 \oplus \cdots \oplus a_n$
- Parallelize using a binary tree:

ary tree:

Breaks than.

Proc.

$$T_{p} \leq \frac{1}{p} + T_{\infty}$$
 $\leq \frac{n}{p} + \log n$
 $\Rightarrow p = \Theta(\sqrt[n]{\log n})$
 $\Rightarrow T_{p} = O(\log n)$

$$1 = N-1$$
 $1 = N-1$
 $1 = N-1$

Computing the Sum

Lemma: The sum $s_n = a_1 \oplus a_2 \oplus \cdots \oplus a_n$ can be computed in time $O(\log n)$ on an EREW PRAM. The total number of operations (total work) is O(n).

Proof:

Corollary: The sum s_n can be computed in time $O(\log n)$ using $O(n/\log n)$ processors on an EREW PRAM.

Proof:

• Follows from Brent's theorem $(T_1 = O(n), T_{\infty} = O(\log n))$

Getting The Prefix Sums

- Instead of computing the sequence $\underline{s_1, s_2, ..., s_n}$ let's compute $r_1, ..., r_n = \underline{0}, \underline{s_1}, s_2, ..., s_{n-1}$ (0: neutral element w.r.t. \oplus) $r_1, \dots, r_n = 0, a_1, a_1 \oplus a_2, \dots, a_1 \oplus \dots \oplus a_{n-1}$
- Together with \underline{s}_n , this gives all prefix sums
- Prefix sum $r_i = s_{i-1} = \underline{a_1} \oplus \cdots \oplus a_{i-1}$:

Getting The Prefix Sums

Claim: The prefix sum $r_i = \underline{a_1} \oplus \cdots \oplus \underline{a_{i-1}}$ is the sum of all the leaves in the left sub-tree of each ancestor u of the leaf v containing a_i such that v is in the right sub-tree of u.

Computing The Prefix Sums

For each node v of the binary tree, define r(v) as follows:

• r(v) is the sum of the values a_i at the leaves in all the left subtrees of ancestors \underline{u} of v such that v is in the right sub-tree of u.

For a leaf node v holding value a_i : $\underline{r(v)} = r_i = s_{i-1}$

For the root node: r(root) = 0

For all other nodes v:

Computing The Prefix Sums

- leaf node v holding value a_i : $r(v) = r_i = s_{i-1}$
- root node: r(root) = 0
- Node v is the left child of u: r(v) = r(u)

Algorithm to compute values r(v):

- 1. Compute sum of values in each sub-tree (bottom-up)
 - Can be done in parallel time $O(\log n)$ with O(n) total work
- 2. Compute values r(v) top-down from root to leaves:
 - To compute the value r(v), only r(u) of the parent u and the sum of the left sibling (if v is a right child) are needed
 - Can be done in parallel time $O(\log n)$ with O(n) total work

Example

- 1. Compute sums of all sub-trees
 - Bottom-up (level-wise in parallel, starting at the leaves)
- 2. Compute values r(v)
 - Top-down (starting at the root)

Computing Prefix Sums

Theorem: Given a sequence $a_1, ..., a_n$ of n values, all prefix sums $s_i = a_1 \oplus \cdots \oplus a_i$ (for $1 \le i \le n$) can be computed in time $O(\log n)$ using $O(n/\log n)$ processors on an EREW PRAM.

Proof:

- Computing the sums of all sub-trees can be done in parallel in time $O(\log n)$ using O(n) total operations.
- The same is true for the top-down step to compute the r(v)
- The theorem then follows from Brent's theorem:

$$T_1 = O(n), \qquad T_\infty = O(\log n) \implies T_p < T_\infty + \frac{T_1}{p}$$

Remark: This can be adapted to other parallel models and to different ways of storing the value (e.g., array or list)

Parallel Quicksort

Key challenge: parallelize partition

- How can we do this in parallel?
- For now, let's just care about the values ≤ pivot
- What are their new positions

Using Prefix Sums

Goal: Determine positions of values ≤ pivot after partition pivot

Partition Using Prefix Sums

- The positions of the entries > pivot can be determined in the same way
- Prefix sums: $T_1 = O(n)$, $T_{\infty} = O(\log n)$
- Remaining computations: $T_1 = O(n)$, $T_{\infty} = O(1)$
- Overall: $T_1 = O(n)$, $T_{\infty} = O(\log n)$

Lemma: The partitioning of quicksort can be carried out in parallel in time $O(\log n)$ using $O(\frac{n}{\log n})$ processors.

Proof:

• By Brent's theorem: $T_p \le \frac{T_1}{p} + T_{\infty}$

Applying to Quicksort

Theorem: On an EREW PRAM, using p processors, randomized quicksort can be executed in time T_p (in expectation and with high probability), where

$$T_p = O\left(\frac{n\log n}{p} + \underline{\log^2 n}\right).$$

Proof:

I had:
$$T_1 = O(u)$$
, $T_\infty = O(\log u)$ $\longrightarrow O(\log u)$ recursion levels recursion (rand. gardesort)

where $V_1 = O(u\log u)$, $V_\infty = O(\log^2 u)$

Remark:

• We get optimal (linear) speed-up w.r.t. to the sequential algorithm for all $p = O(n/\log n)$.

Other Applications of Prefix Sums

- Prefix sums are a very powerful primitive to design parallel algorithms.
 - Particularly also by using other operators than +

Example Applications:

- Lexical comparison of strings
- Add multi-precision numbers
- Evaluate polynomials
- Solve recurrences
- Radix sort / quick sort
- Search for regular expressions
- Implement some tree operations
- ...