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The input to the problem is an integer array A of length n. The goal is to find a subarray such
that the sum of the elements in the subarray is as large as possible. Formally, the output should
be two integers 1 < ¢ < 7 < n such that the sum

1S maximized.

Give an algorithm that solves the problem in time at most O(nlog n). It suffices to describe the
algorithm in words, we do not expect detailed pseudo-code. Note, however, that you have to
show that your algorithm has running time at most O(n logn).
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Divide & Conquer

e Split array A in two parts (left & right):

e Optimal subinterval can have 3 forms:

PeCUISI O

_b

*__

e

] h’l

e Cases1&2:getfrom recursive calls on left and right half

e (Case 3:

— Find best subarrays of left/right part starting at right/left end of part
— Only need to check O(n) cases = time 0(n)
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Divide & Conquer Analysis

e Array A of lengthn

1. Divide into two parts of length n/2.

2. Solve recursively on the two parts

3. Find optimal interval for Case 3 in O(n) time 3—

* Recurrence relation: T(n) = 2T(n/2) + 0(n)

e Same recurrence relation as merge sort, closest pair of points,
number of inversions, ...

= time: T(n) = O(nlogn)

—
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Fast Divide & Conquer |
e Recursively compute best intervals of the following 4 forms:

—D

C—
S5 —_—
—_———

[—]

c—2_ \
S

= XX —_—

e Combinein O(1) time:

1.|

2.

3.]

4.|
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Fast Divide & Conquer Analysis

e Array A of lengthn

1. Divide into two parts of length n/2.

2. Solve all 4 cases recursively on the two parts

3. Find optimal intervals for all 4 cases in time 0(1)

—

e Recurrence relation:

T(n) < 2T(n/2) +c)
=4T(n/4) + 2c + ¢
=8T(n/8)+4c+ 2c+c
<n-TQ)+n-c

= time: T(n) = LO’L_)

—_—
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Dynamic Programming Solution L = VA

¢

e Foralli € {1,...,n}: B[i]: value of best interval ending at A[i]

BLD
U Uz |4l A

PERTY

e Recursive formulation:
Bli] = max{Alil],Bli — 1] + Ali]}s—

Ht

BLD, A, - - f

 Compute all B[i] in time O(n)

— sum of optimal interval is max B|[i]
l

e Get indexes of best interval in the obvious way
— Store for each B[i] also where the best interval ending at i starts
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P2: Exponentiating Polynomials (13pt)

UNI
FREIBURG

Given a polynomial M of degree n and an integer k > 2, the goal of this problem is to compute
the k™ power pkﬁ) of p(z) in an efficient way. For simplicity, we assume that k is a power of 2,
that is, k = 2° for some integer £ > 1. Give an efficient algorithm to compute p*(x) and analyze
the running time of your algorithm! L

(fFfﬂ?

Simplest solution:

1. Convert p(x) into point-value repr. using the DFT alg.
— Gives p(wY) foralli =0, ...,N — 1 (and appropriathV_)

2. Compute p*(x) in point-value repr.:

. S \k
Pt (k) = (p(wh)
3. Convert back to coefficient ngresentation using the inverse
DFT alg.

Time: O(N -log N) ... but what i@
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Given a polynomial p(z) of degree n and an integer k£ > 2, the goal of this problem is to compute
the k%" power p*(z) of p(z) in an efficient way. For simplicity, we assume that % is a power of 2,
that is, k = 2° for some integer £ > 1. Give an efficient algorithm to compute p*(x) and analyze
the running time of your algorithm!

Time: O(N -log N) ... butwhatis N?

* |f the degree of the polynomial p*(x) is d, N has to be at
leastd + 1

A "
* Degreeof p“(x)isk - n P&l = (o 3 - )
— Hence: N > kn+1 =(qt &4 - - )

e Time: O(kn - log(kn))
P
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Given a polynomial p(z) of degree n and an integer k£ > 2, the goal of this problem is to compute
the k%" power p*(z) of p(z) in an efficient way. For simplicity, we assume that % is a power of 2,
that is, k = 2° for some integer £ > 1. Give an efficient algorithm to compute p*(x) and analyze

. o
the running time of your algorithm! ? ?'_ XA 'a"cf A)
Alternative Solution

Compute p*(x) = p?' (x) as

2

p? (x) = ((&))2)2 £ s

e Square the polynomial £ = log k times

—_—

e Degree after squaring t times: n - 2t

=

Time for t*" squaring:
<
O(n-2t-log(n2t)) =2t-0(n- log(n‘lsc))
» 7 =

- {
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Given a polynomial p(z) of degree n and an integer k£ > 2, the goal of this problem is to compute
the k%" power p*(z) of p(z) in an efficient way. For simplicity, we assume that % is a power of 2,
that is, k = 2° for some integer £ > 1. Give an efficient algorithm to compute p*(x) and analyze
the running time of your algorithm!

Alternative Solution

e Square the polynomial £ = log k times

tth

e Time for squaring:

O(n -2t -log(n2t)) =2t-0(n-log(nk)) =
=
e Total time:
Y,
O(n-log(nk))- ) 2t =0(nk-log(nk))

=1

712000 =0(L)
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The evil villain Gamma-Zone plans to brainwash all other people in his universe, which happens
to be a 1-dimensional line. The people-to-suppress have houses at positions z; < 75 < ... <
x,. To reach every one of them, Gamma-Zone needs to place costly radio antennas a4, as, . . .,
where each antenna covers all houses in a radius of r (Gamma-Zone can also place an antenna
on top of a house).

(a) (6 points) Help Gamma-Zone by stating a (fast) greedy algorithm that calculates where to
place his antennas such that he uses as few as possible while covering all houses. What is
the running time of your algorithm?

(b) (9 points) Prove that your algorithm always computes an optimal solution.
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P3: Placing Radio Signal Antennas (27 pt)

UNI

e o) ey )
N A N N Am N N

1 To I3 T4 I T

I ] k (]
T | L 4 k g -} T

Greedy Algorithm

e Place antennas as far to the right as possible:
— First antenna at position x; + 7 (first house needs to be covered)
— Let i be the first house that’s not covered by the first antenna
— Place antenna at position x; + r
— etc.

Algorithm Theory, WS 2013/14 Fabian Kuhn 13
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Greedy Algsorithhrm (Forrmallvw)

- Positionmn of A% anmntenma: Yy,
- Defime for each A~ — A,.2, ...
£4q ==— DA, 7o =z=— miirl{x,; = s _ 1 —+ 3% Cfoxr < — 1D
- Positionmn of A% amntenmna-:
Dore FTE= X g, —— 7

Greedy Algorithm (formally)
e Position of k" antenna: y;,
e Defineforeachk = 1,2, ...

i, =1, i = miin{ﬁ- > yi_1 +1} (fork > 1)

e Position of k" antenna:
Vi =X, + 71

—

S—

Algorithm Theory, WS 2013/14 Fabian Kuhn 14



P3: Placing Radio Signal Antennas (27 pt)

UNI

Ly ) (e ),
N A N N A(\ N N

I T2 I3 T4 Is Tk

I ] k (]
T - L 4 k g -} T

Greedy Algorithm Example

FREIBURG

Q ; Q o | ; ;
1 w4 X2 X3 &1 \f"sj X6 7
< ° > < > < ® > < o
Y1 Y2 Y3 Y4
Optimality
 Show: In any solution, k" antenna has position < y,,
— -_—

* Follows by induction because

— Induction hypothesis: first k — 1 antennas do not cover house at X,
———
— House at x;, needs to be covered! < Xx. (¢
— l

13
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(c) (12 points) Realizing the opportunity, the Evil Villain Supply Company (EVSP) decides to
offer two different kinds of antennas to Gamma-Zone: One costs c gold coins and has a
reach of 7, while the other costs ¢ = 2¢ gold coins, but provides a reach of # = 3r Can you
state a (fast) algorithm that minimizes >s Gamma-Zone’s expenses? What is the runmng time
of your algorithm?

e Greedy algorithm does not work any more
e Use dynamic programming!
e Observation:

— can shift last antenna such that its range ends at position x,, (last house)
_—

— Can shift every antenna to the left such that its coverage ends at a house
/—fi

Algorithm Theory, WS 2013/14 Fabian Kuhn 16



UNI

P3: Placing Radio Signal Antennas (27 pt)

(c) (12 points) Realizing the opportunity, the Evil Villain Supply Company (EVSP) decides to
offer two different kinds of antennas to Gamma-Zone: One costs ¢ gold coins and has a
reach of r, while the other costs ¢ = 2¢ gold coins, but provides a reach of ¥ = 3r. Can you
state a (fast) algorithm that minimizes Gamma-Zone’s expenses? What is the running time
of your algorithm?

e Observation:
— can shift last antenna such that its range ends at position x,, (last house)
— Can shift every antenna to the left such that its coverage ends at a house

. Define(OPT(k)'ll opt. cost to cover x4, ..., X,

— Can assume that coverage of Iast antenna ends at x;, =— TR GRTde) + <

— Two cases: W/Z, I A-h'a
(‘4.'\

1. Last antenna hasreach r:

k

B | S

2. Lastantenna has reach 3r: =~ —
Xy 2y
SUORIHICLD

Algorithm Theory, WS 2013/14 Fabian Kuhn ZC 17
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(c) (12 points) Realizing the opportunity, the Evil Villain Supply Company (EVSP) decides to
offer two different kinds of antennas to Gamma-Zone: One costs ¢ gold coins and has a
reach of r, while the other costs ¢ = 2¢ gold coins, but provides a reach of # = 3r. Can you
state a (fast) algorithm that minimizes Gamma-Zone’s expenses? What is the running time
of your algorithm?

 OPT(k): opt. cost to cover x4, ..., Xy,

» Define functions a(k) and @ (k) [
a(k) = max{xl- <x,—2r} T ° X
a(k) = max{xl < w}

e Recursive definition for OPT (k)
—=0PT(0) = 0,

OPT (k) = min{OPT( awPT(&(k)) + ¢}

Algorithm Theory, WS 2013/14 Fabian Kuhn 18
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(c) (12 points) Realizing the opportunity, the Evil Villain Supply Company (EVSP) decides to
offer two different kinds of antennas to Gamma-Zone: One costs ¢ gold coins and has a
reach of r, while the other costs ¢ = 2¢ gold coins, but provides a reach of # = 3r. Can you
state a (fast) algorithm that minimizes Gamma-Zone’s expenses? What is the running time
of your algorithm? -

e Recursive definition for OPT (k) ! -t

OPT(0) = 0, T TN
OPT (k) = min{OPT(a(k)) + ¢, OPT(a(k)) + ¢}

Dynamic programming algorithm
* Compute OPT (k) forall k = 1, ...,n (in that order)
* Need to have a(k) and a (k)

— Binary search: O(logn) time for each a(k) and @ (k)
— All a(k) and @&(k) can also be computed in time O(n)

]

— Left as an exercise ;-)

Algorithm Theory, WS 2013/14 Fabian Kuhn 19
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(a) (6 points) First, consider the following binomial heap (the values a; represent the items, the
values next to the a; are the keys). Perform the following two operations and draw the heap
after each of the operations:

—= 1. decrease-key(ag, 3) (i.e., the new key of ag should be 3)

—> 2. delete-min A

Algorithm Theory, WS 2013/14 Fabian Kuhn 20
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e delete-min m‘“\

s
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(b) (12 points) We now want to adapt the binomial heap implementation to support an ad-
ditional operation add-value(d), which adds the value d to all the keys in the heap. All
operation (including the new_add-value operation) should take time at most O(logn). De-
scribe how you have to change the representation of the binomial heap to also support the
new operation. Briefly sketch how you have to change the implementation of the operations
of the binomial heap. Describe in detail how you need to change the link procedure to link
two binomial trees of the same size.

e |dea: just have a global variable a with an offset for all keys

 Problem: merge operation! i

— Merging two heaps with different offsets is very expensiv

e Change idea: have an offset for every node
 Problem: add-value operation becomes very expensive

e Combine ideas: Have an offset for every subtree (stored at root)
— One value per node, but

— Changing offset for all nodes: just change root list (O (logn) nodes)

- = T T
Algorithm Theory, WS 2013/14 Fabian Kuhn 22
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Solution: Offset for each subtree

e Key of a node x can be obtained by:
— Key stored at node x plus sum of offsets on path to root

2 12 dt2=%

S+2-~1=6
L(+2—|+3=3 C:‘\D 3+) )
g 6
£12-113 = (D
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Solution: Offset for each subtree

e Link operation et v
- uargl
<Lf/ ‘-2:. ) %ﬁw v
2 Lolode curu v/
! deer.—
n n
‘A 4
([~ -
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In the lecture, we discussed the linked list implementation of the union-find data structure. Let
n be the total number of makeset operations. We showed that if in each union operation the
shorter list is attached to the longer list, the total cost of all (at most n — 1) union operations is
O(nlogn). This implies that we have time O(1) for each operation and additionally O(logn)

“for each element (or each makeset operation). Hence, we get that the amortized cost of makeset
is O(log n), whereas the amortized costs of union and find are O(1). Because in the linked list
implementation, the union operation is the expensive one, it would be more natural to say that
the union operation has amortized cost O(logn) and that the other two operations have O(1)
amortized cost. However, the analysis from the lecture does not reflect this.

The goal here is to prove this intuition. Let S(¢) denote the collection of sets represented by the
data structure after ¢ operations. Consider the following potential function:

O(t):= > |S|(logyn —log,|S]).
SeS(t):]S|>2

—

(a) (2 points) Show that ®(¢) is a valid potential function!

(b) (12 points) By using the potential function ®(t), show that the amortized costs of makeset
and find are O(1) and that the amortized cost of union is O(log n). You can assume that the
actual costs of makeset and find are at most 1 and that the actual cost of union of two sets is
at most the size of the smaller of the two sets.

Algorithm Theory, WS 2013/14 Fabian Kuhn 25
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o (t) = z 1S1(log, n.— log, S1)
Ses(b); IS|z2= “‘\:O\___/

-

(a) (2 points) Show that (¢ ) is mhd potential function!

(b) (12 points) By using the potential function ®(¢), show that the amortized costs of w

~ " and find are O(1) and that the amortized cost of union is O(logn). You can assume that the
actual costs of makeset and find are at most 1 and that the actual cost of union of two sets is
at most the size of the smaller of the two sets.

QoQ c{)(ﬂ 20 \/ !luq(cesQL:

Cpe) a, <!
opere t actual sk Cy i
() operdies bl b a, | OO

Q= C, + d?(‘Q "'Cb&"‘) L

e C £ |
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O()= ) ISI(log;n — log,ISI)
SES(t):|S|=2
(a) (2 points) Show that ®(¢) is a valid potential function!

(b) (12 points) By using the potential function ®(¢), show that the amortized costs of makeset
and find are O(1) and that the amortized cost of union is O(logn). You can assume that the
actual costs of makeset and find are at most 1 and that the actual cost of union of two sets is

at most the size of the smaller of the two sets.

uden o sl S 28, ISis (&l

¢ s |5 L (5122

PO -GN = (5] 15D - &y (8141

| ~ (16l 521Gy - B51S:D)

= 1Sy 5] +1$1 (S - (IS)H1SD G (ISIH15:)

Algorithm Theory, WS 2013/14 Fabian Kuhn 27

FREIBURG



P5: Amortized Analysis (14pt)

|
FRE:BURG

UNI

o)== ) ISI(og,n—log,ISI)

SES(t):|S|=2
(a) (2 points) Show that ®(¢) is a valid potential function! ( \ 3.] < |§¢D

(b) (12 points) By using the potential function ®(¢), show that the amortized costs of makeset
and find are O(1) and that the amortized cost of union is O(logn). You can assume that the
actual costs of makeset and find are at most 1 and that the actual cost of union of two sets is
at most the size of the smaller of the two sets.

a = \S) + (Sl IS 418 ey (5] — (150 +10) (Jq (1S1+1S4])

|51 (814 ~ Sy ISJ+isD + 1,1 (w@

2 Jo, ( 2184 SO

= ﬂga&s‘m

< O
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o) = ) 51(log; n ~ logy s
SES(t):|S|=2 o D
(a) (2 points) Show that ®(¢) is a valid potenti’e'fl'ﬁﬁl‘c':tf)‘n!

(b) (12 points) By using the potential function ®(¢), show that the amortized costs of makeset
and find are O(1) and that the amortized cost of union is O(logn). You can assume that the
actual costs of makeset and find are at most 1 and that the actual cost of union of two sets is

at most the size of the smaller of the two sets.

N G o Y

Cfé \ \g \22
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