

Chapter 2 Greedy Algorithms

Algorithm Theory WS 2013/14

Fabian Kuhn

Greedy Algorithms

No clear definition, but essentially:

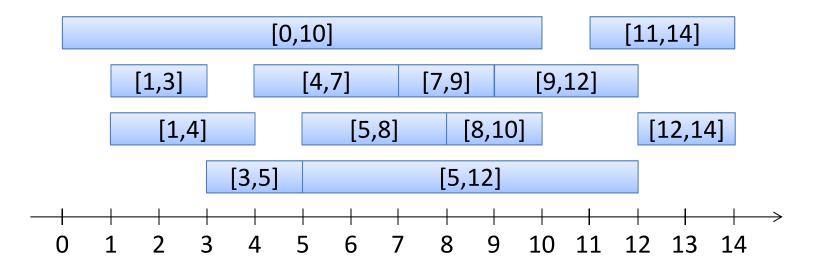
In each step make the choice that looks best at the moment!

- Depending on problem, greedy algorithms can give
 - Optimal solutions
 - Close to optimal solutions
 - No (reasonable) solutions at all
- If it works, very interesting approach!
 - And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Interval Scheduling

• **Given:** Set of intervals, e.g. [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

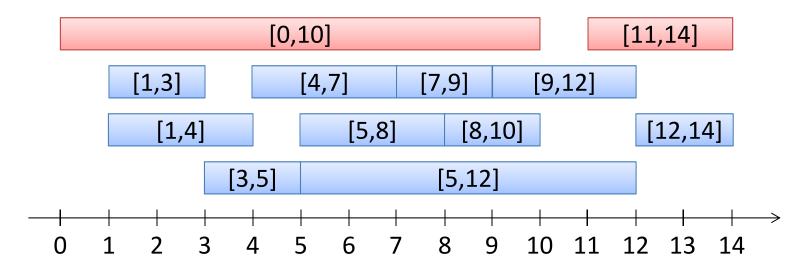


- Goal: Select largest possible non-overlapping set of intervals
 - Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping
- Example: Intervals are room requests; satisfy as many as possible

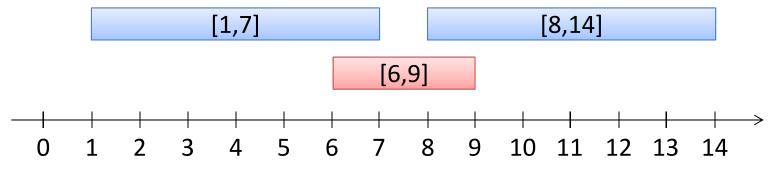
Greedy Algorithms

• Several possibilities...

Choose first available interval:

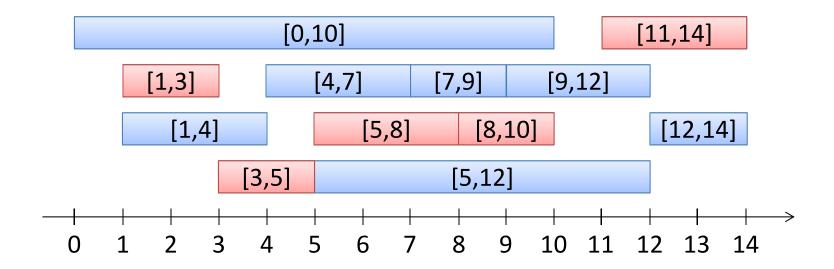


Choose shortest available interval:



Greedy Algorithms

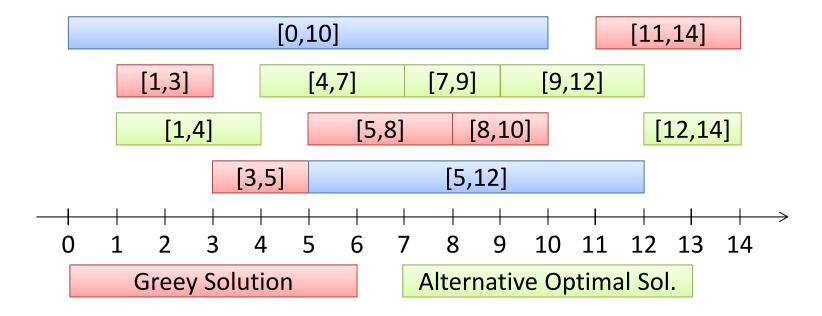
Choose available request with earliest finishing time:



 $R \coloneqq \text{set of all requests}; S \coloneqq \text{empty set};$ while R is not empty do
 choose $r \in R$ with smallest finishing time
 add r to S delete all requests from R that are not compatible with rend
 | // S is the solution

Earliest Finishing Time is Optimal

- Let O be the set of intervals of an optimal solution
- Can we show that S = 0?
 - No...



• Show that |S| = |O|.

Greedy Stays Ahead

Greedy Solution:

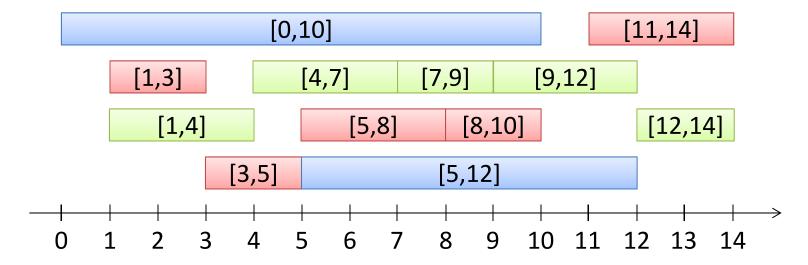
$$[a_1, b_1], [a_2, b_2], \dots, [a_{|S|}, b_{|S|}], \quad \text{where } b_i \le a_{i+1}$$

Optimal Solution:

$$[a_1^*, b_1^*], [a_2^*, b_2^*], \dots, [a_{|O|}^*, b_{|O|}^*], \quad \text{where } b_i^* \le a_{i+1}^*$$

• Assume that $b_i = \infty$ for i > |S| and $b_i^* = \infty$ for i > |O|

Claim: For all $i \geq 1$, $b_i \leq b_i^*$



Greedy Stays Ahead

Claim: For all $i \geq 1$, $b_i \leq b_i^*$

Proof (by induction on *i*):

Corollary: Earliest finishing time algorithm is optimal.

Weighted Interval Scheduling

Weighted version of the problem:

- Each interval has a weight
- Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

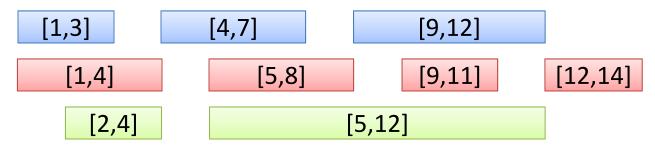
- Algorithm needs to look at weights
- Else, the selected sets could be the ones with smallest weight...

No simple greedy algorithm:

We will see an algorithm using another design technique later.

Interval Partitioning

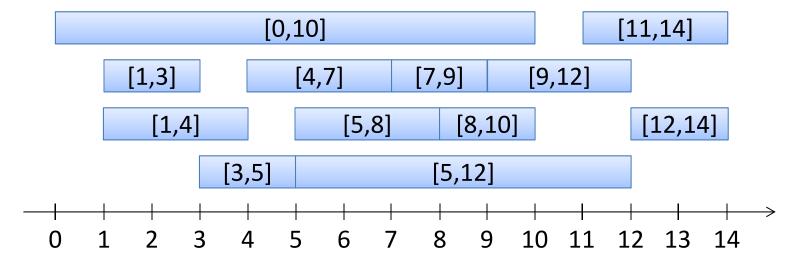
- Schedule all intervals: Partition intervals into as few as possible non-overlapping sets of intervals
 - Assign intervals to different resources, where each resource needs to get a non-overlapping set
- Example:
 - Intervals are requests to use some room during this time
 - Assign all requests to some room such that there are no conflicts
 - Use as few rooms as possible
- Assignment to 3 resources:



Depth

Depth of a set of intervals:

- Maximum number passing over a single point in time
- Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):



Lemma: Number of resources needed ≥ depth

Greedy Algorithm

Can we achieve a partition into "depth" non-overlapping sets?

Would mean that the only obstacles to partitioning are local...

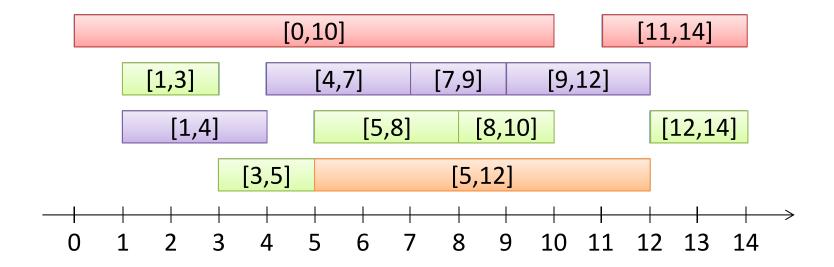
Algorithm:

- Assigns labels 1, ... to the sets; same label \rightarrow non-overlapping
- 1. sort intervals by starting time: $I_1, I_2, ..., I_n$
- 2. for i=1 to n do
- 3. assign smallest possible label to I_i (possible label: different from conflicting intervals I_i , j < i)
- 4. end

Interval Partitioning Algorithm

Example:

• Labels:



• Number of labels = depth = 4

Interval Partitioning: Analysis

Theorem:

- a) Let d be the depth of the given set of intervals. The algorithm assigns a label from 1, ..., d to each interval.
- b) Sets with the same label are non-overlapping

Proof:

- b) holds by construction
- For a):
 - All intervals I_i , j < i overlapping with I_i , overlap at the beginning of I_i

- At most d-1 such intervals → some label in $\{1, ..., d\}$ is available.

Traveling Salesperson Problem (TSP)

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \to \mathbb{R}$, i.e., d(u, v): dist. from u to v
- Distances usually symmetric, asymm. distances → asymm. TSP

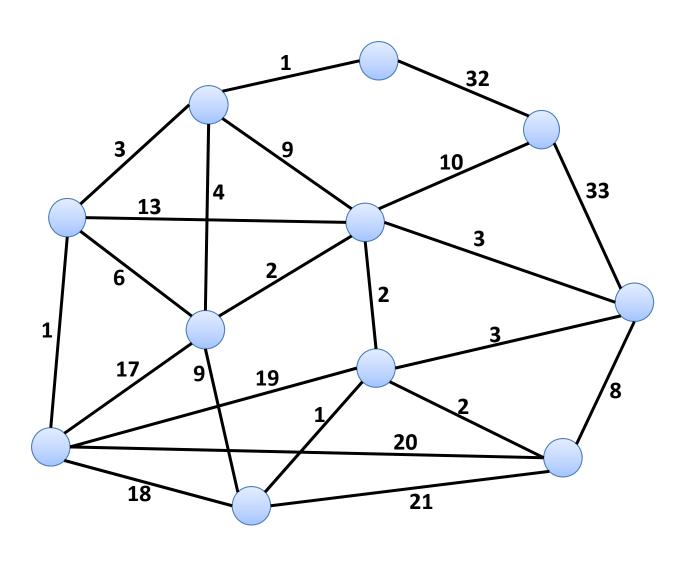
Solution:

- Ordering/permutation $v_1, v_2, ..., v_n$ of nodes
- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour: $d(v_n, v_1) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

Minimize length of TSP path or TSP tour

Example



Optimal Tour:

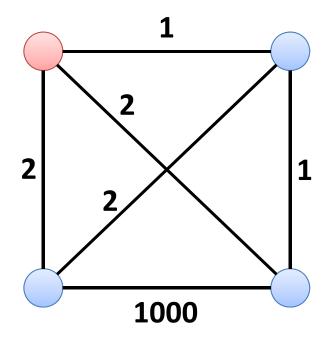
Length: 86

Greedy Algorithm?

Length: 121

Nearest Neighbor (Greedy)

Nearest neighbor can be arbitrarily bad, even for TSP paths



TSP Variants

Asymmetric TSP

- arbitrary non-negative distance/cost function
- most general, nearest neighbor arbitrarily bad
- NP-hard to get within any bound of optimum

Symmetric TSP

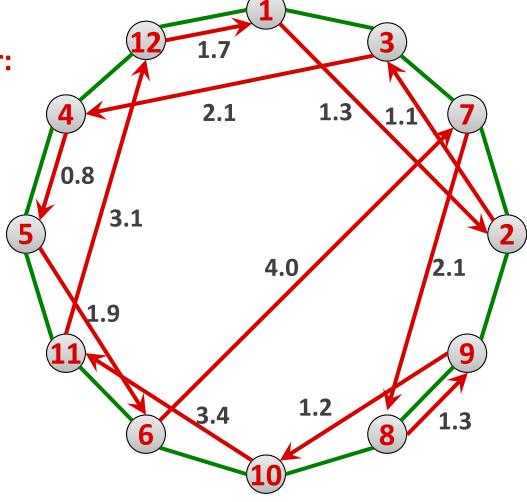
- arbitrary non-negative distance/cost function
- nearest neighbor arbitrarily bad
- NP-hard to get within any bound of optimum

Metric TSP

- distance function defines metric space: symmetric, non-negative, triangle inequality: $d(u, v) \le d(u, w) + d(w, v)$
- possible to get close to optimum (we will later see factor $^3/_2$)
- what about the nearest neighbor algorithm?

Optimal TSP tour:

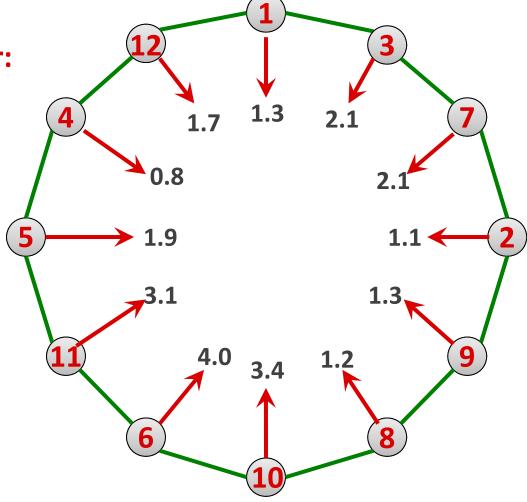
Nearest-Neighbor TSP tour:



Optimal TSP tour:

Nearest-Neighbor TSP tour:

cost = 24

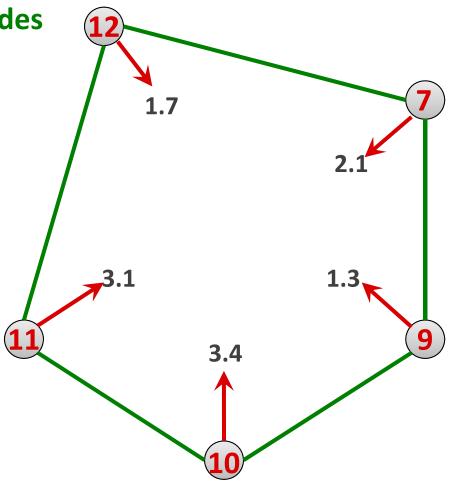


Triangle Inequality:

optimal tour on remaining nodes

 \leq

overall optimal tour



Analysis works in phases:

- In each phase, assign each optimal edge to some greedy edge
 - Cost of greedy edge ≤ cost of optimal edge
- Each greedy edge gets assigned ≤ 2 optimal edges
 - At least half of the greedy edges get assigned
- At end of phase:
 - Remove points for which greedy edge is assigned Consider optimal solution for remaining points
- Triangle inequality: remaining opt. solution ≤ overall opt. sol.
- Cost of greedy edges assigned in each phase ≤ opt. cost
- Number of phases $\leq \log_2 n$
 - +1 for last greedy edge in tour

• Assume:

NN: cost of greedy tour, OPT: cost of optimal tour

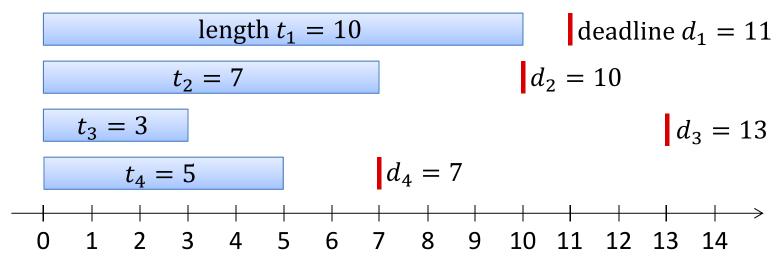
• We have shown:

$$\frac{NN}{OPT} \le 1 + \log_2 n$$

- Example of an approximation algorithm
- We will later see a $\frac{3}{2}$ -approximation algorithm for metric TSP

Back to Scheduling

Given: n requests / jobs with deadlines:



- Goal: schedule all jobs with minimum lateness *L*
 - Schedule: s(i), f(i): start and finishing times of request iNote: $f(i) = s(i) + t_i$
- Lateness $L := \max \left\{ 0, \max_{i} \{ f(i) d_i \} \right\}$
 - largest amount of time by which some job finishes late
- Many other natural objective functions possible...

Greedy Algorithm?

Schedule jobs in order of increasing length?

- Ignores deadlines: seems too simplistic...
- E.g.:

$$t_1 = 10$$

deadline $d_1 = 10$

$$t_2 = 2$$

...
$$d_2 = 100$$

Schedule:
$$t_2 = 2$$

$$t_1 = 10$$

Schedule by increasing slack time?

• Should be concerned about slack time: $d_i - t_i$

$$t_1 = 10$$

deadline $d_1 = 10$

$$t_2 = 2$$

$$t_2 = 2 \qquad d_2 = 3$$

Schedule:

$$t_1 = 10$$

$$t_2 = 2$$

Greedy Algorithm

Schedule by earliest deadline?

- Schedule in increasing order of d_i
- Ignores lengths of jobs: too simplistic?
- Earliest deadline is optimal!

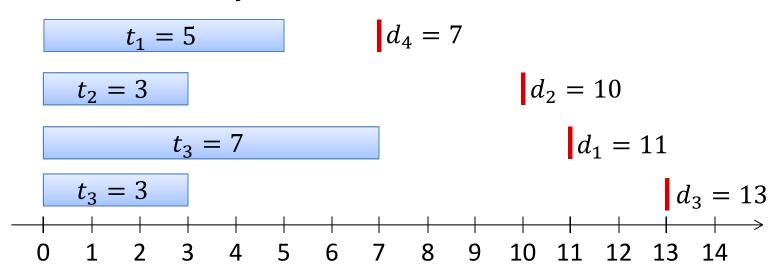
Algorithm:

- Assume jobs are reordered such that $d_1 \le d_2 \le \cdots \le d_n$
- Start/finishing times:
 - First job starts at time s(1) = 0
 - Duration of job i is t_i : $f(i) = s(i) + t_i$
 - No gaps between jobs: s(i + 1) = f(i)

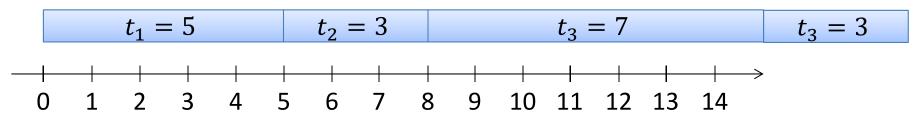
(idle time: gaps in a schedule \rightarrow alg. gives schedule with no idle time)

Example

Jobs ordered by deadline:



Schedule:



Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

Basic Facts

- 1. There is an optimal schedule with no idle time
 - Can just schedule jobs earlier...
- 2. Inversion: Job i scheduled before job j if $d_i > d_j$ Schedules with no inversions have the same maximum lateness

Earliest Deadline is Optimal

Theorem:

There is an optimal schedule \mathcal{O} with no inversions and no idle time.

Proof:

- Consider optimal schedule O' with no idle time
- If \mathcal{O}' has inversions, \exists pair (i,j), s.t. i is scheduled immediately before j and $d_j < d_i$

- Claim: Swapping i and j gives schedule with
 - 1. Less inversions
 - 2. Maximum lateness no larger than in O'

Earliest Deadline is Optimal

Claim: Swapping i and j: maximum lateness no larger than in \mathcal{O}'

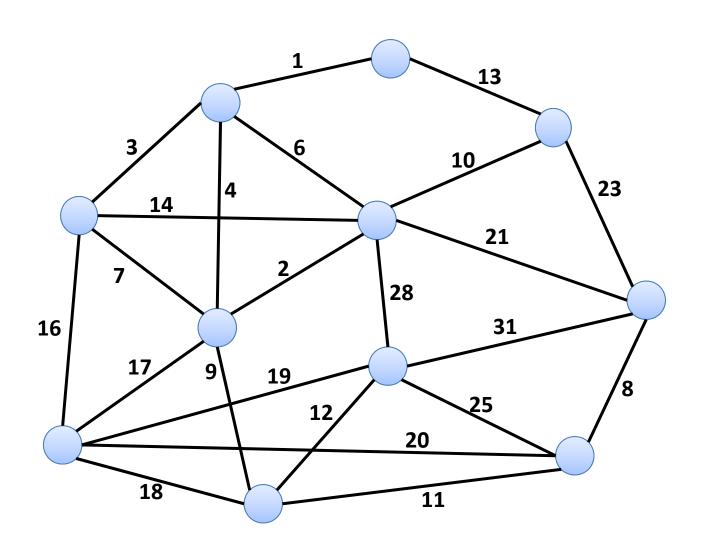
Exchange Argument

- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite...

Another Exchange Argument Example

- Minimum spanning tree (MST) problem
 - Classic graph-theoretic optimization problem
- Given: weighted graph
- Goal: spanning tree with min. total weight
- Several greedy algorithms work
- Kruskal's algorithm:
 - Start with empty edge set
 - As long as we do not have a spanning tree:
 add minimum weight edge that doesn't close a cycle

Kruskal Algorithm: Example



Kruskal is Optimal

- Basic exchange step: swap to edges to get from tree T to tree T'
 - Swap out edge not in Kruskal tree, swap in edge in Kruskal tree
 - Swapping does not increase total weight
- For simplicity, assume, weights are unique:

Matroids

Same, but more abstract...

Matroid: pair(E, I)

- E: set, called the ground set
- *I*: finite family of finite subsets of E (i.e., $I \subseteq 2^E$), called **independent sets**

(E, I) needs to satisfy 3 properties:

- 1. Empty set is independent, i.e., $\emptyset \in I$ (implies that $I \neq \emptyset$)
- **2.** Hereditary property: For all $A \subseteq I$ and all $A' \subseteq A$,

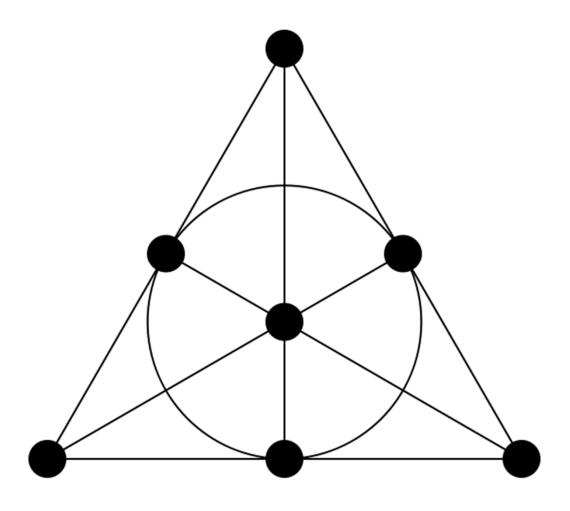
if $A \in I$, then also $A' \in I$

3. Augmentation / Independent set exchange property: If $A, B \in I$ and |A| > |B|, there exists $x \in A \setminus B$ such that

$$\mathbf{B}' \coloneqq \mathbf{B} \cup \{\mathbf{x}\} \in \mathbf{I}$$

Example

- Fano matroid:
 - Smallest finite projective plane of order 2...



Matroids and Greedy Algorithms

Weighted matroid: each $e \in E$ has a weight w(e) > 0

Goal: find maximum weight independent set

Greedy algorithm:

- 1. Start with $S = \emptyset$
- 2. Add max. weight $e \in E \setminus S$ to S such that $S \cup \{e\} \in I$

Claim: greedy algorithm computes optimal solution

Greedy is Optimal

• S: greedy solution

A: any other solution

Matroids: Examples

Forests of a graph G = (V, E):

- forest F: subgraph with no cycles (i.e., $F \subseteq E$)
- \mathcal{F} : set of all forests \rightarrow (E,\mathcal{F}) is a matroid
- Greedy algorithm gives maximum weight forest (equivalent to MST problem)

Bicircular matroid of a graph G = (V, E):

- \mathcal{B} : set of edges such that every connected subset has ≤ 1 cycle
- (E,\mathcal{B}) is a matroid \rightarrow greedy gives max. weight such subgraph

Linearly independent vectors:

- Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.
- Fano matroid can be defined like that

Greedoid

- Matroids can be generalized even more
- Relax hereditary property:

Replace
$$A' \subseteq A \subseteq I \implies A' \in I$$

by $\emptyset \neq A \subseteq I \implies \exists a \in A, \text{ s. t. } A \setminus \{a\} \in I$

- Exchange property holds as before
- Under certain conditions on the weights, greedy is optimal for computing the max. weight $A \in I$ of a greedoid.
 - Additional conditions automatically satisfied by hereditary property
- More general than matroids