

Chapter 3 Dynamic Programming

Algorithm Theory WS 2013/14

Fabian Kuhn

Weighted Interval Scheduling

- **Given:** Set of intervals, e.g. [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]
- Each interval has a weight w

- Goal: Non-overlapping set of intervals of largest possible weight
 - Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping
- **Example:** Intervals are room requests of different importance

Greedy Algorithms

Choose available request with earliest finishing time:

- Algorithm is not optimal any more
 - It can even be arbitrarily bad...
- No greedy algorithm known that works

Solving Weighted Interval Scheduling

- Interval i: start time s(i), finishing time: f(i), weight: w(i)
- Assume intervals 1, ..., n are sorted by increasing f(i)- $0 < f(1) \le f(2) \le ... \le f(n)$, for convenience: f(0) = 0
- Simple observation: Opt. solution contains interval n or it doesn't contain interval n
- Weight of optimal solution for only intervals 1, ..., k: W(k)Define $p(k) \coloneqq \max\{i \in \{0, ..., k-1\} : f(i) \le s(k)\}$
- Opt. solution does not contain interval n: W(n) = W(n-1)Opt. solution contains interval n: W(n) = w(n) + W(p(n))

Example

Interval:

Recursive Definition of Optimal Solution

- Recall:
 - -W(k): weight of optimal solution with intervals 1, ..., k
 - -p(k): last interval to finish before interval k starts
- Recursive definition of optimal weight:

$$\forall k > 1: W(k) = \max\{W(k-1), w(k) + W(p(k))\}$$

 $W(1) = w(1)$

Immediately gives a simple, recursive algorithm

Running Time of Recursive Algorithm

Memoizing the Recursion

- Running time of recursive algorithm: exponential!
- But, alg. only solves n different sub-problems: W(1), ..., W(n)
- There is no need to compute them multiple times

Memoization:

Store already computed values for future use (recursive calls)

Efficient algorithm:

- 1. W[0] = 0; compute values p(i)
- 2. for $i \coloneqq 1$ to n do
- 3. $W[i] := \max\{W[i-1], w(i) + W[p(i)]\}$
- 4. **end**

Example

W[0]W[1]W[2]W[3]W[4]W[5]W[6]W[7]W[8]

Computing the schedule: store where you come from!

Matrix-chain multiplication

Given: sequence (chain) $\langle A_1, A_2, ..., A_n \rangle$ of matrices

Goal: compute the product $A_1 \cdot A_2 \cdot ... \cdot A_n$

Problem: Parenthesize the product in a way that minimizes the number of scalar multiplications.

Definition: A product of matrices is *fully parenthesized* if it is

- a single matrix
- or the product of two fully parenthesized matrix products, surrounded by parentheses.

Example

All possible fully parenthesized matrix products of the chain $\langle A_1, A_2, A_3, A_4 \rangle$:

$$(A_1(A_2(A_3A_4)))$$

$$(A_1((A_2A_3)A_4))$$

$$((A_1A_2)(A_3A_4))$$

$$((A_1(A_2A_3))A_4)$$

$$(((A_1A_2)A_3)A_4)$$

Different parenthesizations

Different parenthesizations correspond to different trees:

Number of different parenthesizations

• Let P(n) be the number of alternative parenthesizations of the product $A_1 \cdot ... \cdot A_n$:

$$P(1) = 1$$

$$P(n) = \sum_{k=1}^{n-1} P(k) \cdot P(n-k), \quad \text{for } n \ge 2$$

$$P(n+1) = \frac{1}{n+1} {2n \choose n} \approx \frac{4^n}{n\sqrt{\pi n}} + O\left(\frac{4^n}{\sqrt{n^5}}\right)$$

$$P(n+1) = C_n \quad (n^{th} \text{ Catalan number})$$

Thus: Exhaustive search needs exponential time!

Multiplying Two Matrices

$$A = (a_{ij})_{p \times q}$$
, $B = (b_{ij})_{q \times r}$, $A \cdot B = C = (c_{ij})_{p \times r}$ $c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj}$

Algorithm *Matrix-Mult*

```
Input: (p \times q) matrix A, (q \times r) matrix B

Output: (p \times r) matrix C = A \cdot B

1 for i \coloneqq 1 to p do

2 for j \coloneqq 1 to r do

3 C[i,j] \coloneqq 0;

for k \coloneqq 1 to q do

5 C[i,j] \coloneqq C[i,j] + A[i,k] \cdot B[k,j]
```

Remark:

Using this algorithm, multiplying two $(n \times n)$ matrices requires n^3 multiplications. This can also be done using $O(n^{2.376})$ multiplications.

Number of multiplications and additions: $p \cdot q \cdot r$

Matrix-chain multiplication: Example

Computation of the product $A_1 A_2 A_3$, where

 A_1 : (50 × 5) matrix

 A_2 : (5 × 100) matrix

 A_3 : (100 × 10) matrix

a) Parenthesization $((A_1A_2)A_3)$ and $(A_1(A_2A_3))$ require:

$$A' = (A_1 A_2):$$

$$A^{\prime\prime}=(A_2A_3):$$

$$A'A_3$$
:

$$A_1A''$$
:

Sum:

Structure of an Optimal Parenthesization

• $(A_{\ell ...r})$: optimal parenthesization of $A_{\ell} \cdot ... \cdot A_{r}$

For some
$$1 \le k < n$$
: $(A_{1...n}) = ((A_{1...k}) \cdot (A_{k+1...n}))$

- Any optimal solution contains optimal solutions for sub-problems
- Assume matrix A_i is a $(d_{i-1} \times d_i)$ -matrix
- Cost to solve sub-problem $A_{\ell} \cdot ... \cdot A_{r}$, $\ell \leq r$ optimally: $C(\ell, r)$
- Then:

$$C(a,b) = \min_{a \le k < b} C(a,k) + C(k+1,b) + d_{a-1}d_k d_b$$

$$C(a,a)=0$$

Recursive Computation of Opt. Solution

Compute $A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5$:

Using Meomization

Compute $A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5$:

Compute $A_1 \cdot ... \cdot A_n$:

- Each C(i,j), i < j is computed exactly once $\rightarrow O(n^2)$ values
- Each C(i,j) dir. depends on C(i,k), C(k,j) for i < k < j

Cost for each C(i,j): $O(n) \rightarrow$ overall time: $O(n^3)$

Dynamic Programming

"Memoization" for increasing the efficiency of a recursive solution:

 Only the *first time* a sub-problem is encountered, its solution is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned

(without repeated computation!).

• Computing the solution: For each sub-problem, store how the value is obtained (according to which recursive rule).

Dynamic Programming

Dynamic programming / memoization can be applied if

- Optimal solution contains optimal solutions to sub-problems (recursive structure)
- Number of sub-problems that need to be considered is small

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal parenthesization in time

$$O(n \cdot \log n)$$
.

2. There is a linear time algorithm that determines a parenthesization using at most

$$1.155 \cdot C(1,n)$$

multiplications.

Knapsack

- n items 1, ..., n, each item has weight w_i and value v_i
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most W and total value is maximized:

$$\max \sum_{i \in S} v_i$$

s.t. $S \subseteq \{1, ..., n\}$ and
$$\sum_{i \in S} w_i \le W$$

• E.g.: jobs of length w_i and value v_i , server available for W time units, try to execute a set of jobs that maximizes the total value

Recursive Structure?

- Optimal solution: \mathcal{O}
- If $n \notin \mathcal{O}$: OPT(n) = OPT(n-1)
- What if $n \in \mathcal{O}$?
 - Taking n gives value v_n
 - But, n also occupies space w_n in the bag (knapsack)
 - There is space for $W w_n$ total weight left!

```
OPT(n) = w_n + optimal solution with first <math>n-1 items and knapsack of capacity W-w_n
```

A More Complicated Recursion

OPT(k, x): value of optimal solution with items 1, ..., k and knapsack of capacity x

Recursion:

Dynamic Programming Algorithm

Set up table for all possible OPT(k, x)-values

• Assume that all weights w_i are integers!

Row i, column j:

OPT(i,j)

Example

- 8 items: (3,2), (2,4), (4,1), (5,6), (3,3), (4,3), (5,4), (6,6) Knapsack capacity: 12 weight value
- $OPT(k, x) = \max\{OPT(k-1, x), OPT(k-1, x-w_k) + v_k\}$

Running Time of Knapsack Algorithm

- Size of table: $O(n \cdot W)$
- Time per table entry: $O(1) \rightarrow$ overall time: O(nW)
- Computing solution (set of items to pick): Follow $\leq n$ arrows $\rightarrow O(n)$ time (after filling table)
- Note: Time depends on $W \rightarrow$ can be exponential in n...
- And it is problematic if weights are not integers.

String Matching Problems

Edit distance:

- For two given strings A and B, efficiently compute the edit distance D(A, B) (# edit operations to transform A into B) as well as a minimum sequence of edit operations that transform A into B.
- **Example:** mathematician → multiplication:

String Matching Problems

Edit distance D(A, B) (between strings A and B):

$$ma-them--atician$$

 $multiplicatio--n$

Approximate string matching:

For a given text T, a pattern P and a distance d, find all substrings P' of T with $D(P, P') \le d$.

Sequence alignment:

Find optimal alignments of DNA / RNA / ... sequences.

Edit Distance

Given: Two strings $A=a_1a_2\dots a_m$ and $B=b_1b_2\dots b_n$

Goal: Determine the minimum number D(A, B) of edit operations required to transform A into B

Edit operations:

- a) Replace a character from string A by a character from B
- **b) Delete** a character from string *A*
- c) Insert a character from string B into A

```
ma-them--atician
multiplicatio--n
```

Edit Distance – Cost Model

- Cost for **replacing** character a by b: $c(a, b) \ge 0$
- Capture insert, delete by allowing $a = \varepsilon$ or $b = \varepsilon$:
 - Cost for **deleting** character $a: c(a, \varepsilon)$
 - Cost for **inserting** character b: $c(\varepsilon, b)$
- Triangle inequality:

$$c(a,c) \le c(a,b) + c(b,c)$$

→ each character is changed at most once!

• Unit cost model:
$$c(a,b) = \begin{cases} 1, & \text{if } a \neq b \\ 0, & \text{if } a = b \end{cases}$$

Recursive Structure

Optimal "alignment" of strings (unit cost model)
 bbcadfagikccm and abbagflrgikacc:

• Consists of optimal "alignments" of sub-strings, e.g.:

• Edit distance between $A_{1,m}=a_1\dots a_m$ and $B_{1,n}=b_1\dots b_n$:

$$D(A,B) = \min_{k,\ell} \{ D(A_{1,k}, B_{1,\ell}) + D(A_{k+1,m}, B_{\ell+1,n}) \}$$

Computation of the Edit Distance

Let
$$A_k\coloneqq a_1\dots a_k$$
 , $B_\ell\coloneqq b_1\dots b_\ell$, and
$$D_{k,\ell}\coloneqq D(A_k,B_\ell)$$

B

Computation of the Edit Distance

Three ways of ending an "alignment" between A_k and B_ℓ :

1. a_k is replaced by b_ℓ :

$$D_{k,\ell} = D_{k-1,\ell-1} + c(a_k, b_\ell)$$

2. a_k is deleted:

$$D_{k,\ell} = D_{k-1,\ell} + c(a_k, \varepsilon)$$

3. b_{ℓ} is inserted:

$$D_{k,\ell} = D_{k,\ell-1} + c(\varepsilon, b_{\ell})$$

Computing the Edit Distance

• Recurrence relation (for $k, \ell \geq 1$)

$$D_{k,\ell} = \min \begin{cases} D_{k-1,\ell-1} + c(a_k, b_\ell) \\ D_{k-1,\ell} + c(a_k, \varepsilon) \\ D_{k,\ell-1} + c(\varepsilon, b_\ell) \end{cases} = \min \begin{cases} D_{k-1,\ell-1} + 1 / 0 \\ D_{k-1,\ell} + 1 \\ D_{k,\ell-1} + 1 \end{cases}$$
unit cost model

• Need to compute $D_{i,j}$ for all $0 \le i \le k$, $0 \le j \le \ell$:

Recurrence Relation for the Edit Distance

Base cases:

$$D_{0,0} = D(\varepsilon, \varepsilon) = 0$$

$$D_{0,j} = D(\varepsilon, B_j) = D_{0,j-1} + c(\varepsilon, b_j)$$

$$D_{i,0} = D(A_i, \varepsilon) = D_{i-1,0} + c(a_i, \varepsilon)$$

Recurrence relation:

$$D_{i,j} = \min egin{cases} D_{k-1,\ell-1} + c(a_k, b_\ell) \ D_{k-1,\ell} + c(a_k, oldsymbol{arepsilon}) \ D_{k,\ell-1} + c(oldsymbol{arepsilon}, oldsymbol{b}_\ell) \end{cases}$$

Order of solving the subproblems

Algorithm for Computing the Edit Distance

Algorithm *Edit-Distance*

Input: 2 strings $A = a_1 \dots a_m$ and $B = b_1 \dots b_n$

Output: matrix $D = (D_{ij})$

$$1 D[0,0] := 0;$$

2 for
$$i := 1$$
 to m do $D[i, 0] := i$;

3 for
$$j := 1$$
 to n do $D[0, j] := j$;

4 for
$$i := 1$$
 to m do

5 for
$$j := 1$$
 to n do

6
$$D[i,j] := \min \begin{cases} D[i-1,j] + 1 \\ D[i,j-1] + 1 \\ D[i-1,j-1] + c(a_i,b_i) \end{cases}$$
;

Example

Computing the Edit Operations


```
Algorithm Edit-Operations(i, j)
Input: matrix D (already computed)
Output: list of edit operations
1 if i = 0 and j = 0 then return empty list
2 if i \neq 0 and D[i, j] = D[i - 1, j] + 1 then
     return Edit-Operations(i-1,j) \circ "delete a_i"
3
  else if j \neq 0 and D[i,j] = D[i,j-1] + 1 then
     return Edit-Operations(i, j - 1) \circ ,,insert b_i"
5
  else // D[i,j] = D[i-1,j-1] + c(a_i,b_i)
     if a_i = b_i then return Edit-Operations (i-1, j-1)
     else return Edit-Operations(i-1, j-1) \circ "replace a_i by b_i"
8
Initial call: Edit-Operations(m,n)
```

Edit Operations

		a	b	C	C	a
	0	1	2	3	4	5
b	1	1	1	2	3	4
a	2	1	2	2	3	3
b	3	2	1	2	3	4
d	4	3	2	2	3	4
a	5	4	3	3	3	3

Edit Distance: Summary

- Edit distance between two strings of length m and n can be computed in O(mn) time.
- Obtain the edit operations:
 - for each cell, store which rule(s) apply to fill the cell
 - track path backwards from cell (m, n)
 - can also be used to get all optimal "alignments"
- Unit cost model:
 - interesting special case
 - each edit operation costs 1

Given: strings $T = t_1 t_2 \dots t_n$ (text) and $P = p_1 p_2 \dots p_m$ (pattern).

Goal: Find an interval [r, s], $1 \le r \le s \le n$ such that the sub-string $T_{r,s} \coloneqq t_r \dots t_s$ is the one with highest similarity to the pattern P:

$$\underset{1 \le r \le s \le n}{\operatorname{arg min}} D(T_{r,s}, P)$$

Naive Solution:

for all $1 \le r \le s \le n$ do compute $D(T_{r,s}, P)$ choose the minimum

A related problem:

• For each position s in the text and each position i in the pattern compute the minimum edit distance E(i,s) between $P_i = p_1 \dots p_i$ and any substring $T_{r,s}$ of T that ends at position s.

Three ways of ending optimal alignment between T_b and P_i :

1. t_b is replaced by p_i :

$$E_{b,i} = E_{b-1,i-1} + c(t_b, p_i)$$

2. t_b is deleted:

$$E_{b,i} = E_{b-1,i} + c(t_b, \varepsilon)$$

3. p_i is inserted:

$$E_{b,i} = E_{b,i-1} + c(\varepsilon, p_i)$$

Recurrence relation (unit cost model):

$$E_{b,i} = \min egin{cases} E_{b-1,i-1} + 1 \ E_{b-1,i} + 1 \ E_{b,i-1} + 1 \end{pmatrix}$$

Base cases:

$$E_{0,0} = 0$$
 $E_{0,i} = i$
 $E_{i,0} = 0$

Example

- Optimal matching consists of optimal sub-matchings
- Optimal matching can be computed in O(mn) time
- Get matching(s):
 - Start from minimum entry/entries in bottom row
 - Follow path(s) to top row
- Algorithm to compute E(b,i) identical to edit distance algorithm, except for the initialization of E(b,0)

Related Problems from Bioinformatics

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid sequences.

Global vs. Local Alignment:

- Global alignment: find optimal alignment of 2 sequences
- Local alignment: find optimal alignment of sequence 1
 (patter) with sub-sequence of sequence 2 (text)