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Weighted Interval Scheduling
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e G@Given: Set of intervals, e.g.

[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

e Each interval has a weight w

[0,10], 1 [11,14], 5
[1,3], 1 [4,7],5 |[7,9],4| [9,12],8
[1,4], 10 [5,8], 1 [8,10], 1 [12,14], 1
[3,5], 2 [5,12], 25
O 1 2 4 5 6 7 8 9 10 11 12 13 14

 Goal: Non-overlapping set of intervals of largest possible weight

— Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

 Example: Intervals are room requests of different importance
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Greedy Algorithms
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Choose available request with earliest finishing time:

[0,10], 1 [11,14],5
[1,3],1 [4,71,5 | [7,9],4| [9,12],2
[1,4], 10 [5,8],1 |[810],1 [12,14], 1
[3,5], 2 [5,12], 25

3 14

o 1 2 3 4 5 6 7 8 9 10 11 12 1

e Algorithm is not optimal any more

— It can even be arbitrarily bad...

 No greedy algorithm known that works

Algorithm Theory, WS 2013/14 Fabian Kuhn 3



Solving Weighted Interval Scheduling
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Interval i: start time s(i), finishing time: f (i), weight: w(i)

Assume intervals 1, ..., n are sorted by increasing f (i)
- 0<f() <f@2) << f(n),for convenience: f(0) =0

Simple observation:
Opt. solution contains interval n or it doesn’t contain interval n

Weight of optimal solution for only intervals 1, ..., k: W (k)
Define p(k) :== max{i € {0, ...,k — 1} : f(i) < s(k)}

Opt. solution does not contain intervaln: W(n) = W(n — 1)

Opt. solution contains interval n: W(n) = w(n) + W(p(n))
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Example
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Interval:

1 [0,5], w=2 p(1)=0
2 [1,7], 4 p(2)=0
3 [5,9], 4 p3)=1
4 [2,11], 5 p(4) =0
5 [9,12], 2 p(5) =3
6 [10,13],1 | p(6) =3
Algorithm Theory, WS 2013/14 Fabian Kuhn



Recursive Definition of Optimal Solution
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e Recall:
— W (k): weight of optimal solution with intervals 1, ..., k
— p(k): last interval to finish before interval k starts

e Recursive definition of optimal weight:

Vi > 1: W(k) = max{W (k — 1),w(k) + W(p(k))}
w(1) =w()

 Immediately gives a simple, recursive algorithm
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Running Time of Recursive Algorithm
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1 p(1)=0
2 p(2)=0
3 p3)=1
4 p(4)=0
5 p(5) =3
6 p(6) =3
W (6)
/ \
W (5) W(3)
W (4) / \W(S) W (2) / \W(l)
| AN |
W(3) W (2) W) W(1)
S \
W(2) W) W)

|
4¢Y)
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Memoizing the Recursion
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 Running time of recursive algorithm: exponential!
* But, alg. only solves n different sub-problems: W (1), ..., W (n)

e There is no need to compute them multiple times

Memoization:
e Store already computed values for future use (recursive calls)

Efficient algorithm:

1. W]O0] := 0; compute values p(i)

2. fori:=1tondo

3. Wil == max{W|[i — 1],w(@) + W[p(i)]}
4. end

Algorithm Theory, WS 2013/14 Fabian Kuhn 8



Example

w=2 p(1) =0

w=4 p(2) =0

= 4 p3) =1
w=>5 p(4) =0
w=2 p(5) =3
w=1 p(6) =3
W = p(7) =5
w==6 p(8) =4

R N O Ul o WIN =

WOl W([1] W[2] W[3] W[4 W[5] W[6] W[7] W [8]
w: 0 2 4 6 6 8 8 11 12

N

Computing the schedule: store where you come from!

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Matrix-chain multiplication

Given: sequence (chain) (4, 4,, ..., A,) of matrices

Goal: compute the product4;-4,-...- 4,

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

e asingle matrix

e orthe product of two fully parenthesized matrix products,
surrounded by parentheses.

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Example
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All possible fully parenthesized matrix products of the chain

(A1, A,y A Ay):

Algorithm Theory, WS 2013/14

(A1 (A,(A434,)))
(A1 ((Az43) 44))
((A4;4;)(A34,))
((4,(A4,43)) 44)

(((A14,)43) Ay)

Fabian Kuhn
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Different parenthesizations
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Different parenthesizations correspond to different trees:

(41(A2(4341))) ((414,)(A;344))

(41((4243)A,)) (((414,)45)A,)

Algorithm Theory, WS 2013/14 Fabian Kuhn 12
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Number of different parenthesizations

e Let P(n) be the number of alternative parenthesizations of
the product A - ...- A:

P(1) =1

n—1
P(n) = P(k) -P(n—k), forn = 2

1 M 4n 4mn
P(n+1) = ~ + 0| —
D=5~ <\/$)
P(n+1)=C, (n'"Catalan number)

e Thus: Exhaustive search needs exponential time!

Algorithm Theory, WS 2013/14 Fabian Kuhn 13
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Multiplying Two Matrices
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A=(ay), .. B=(by), A B=C=(c)

pXT
q

Cij = Z ik Dy j

k=1

Remark:
Algorithm Matrix-Mult

Input: (p X q) matrix 4, (¢ X r) matrix B Using this algorithm, multiplying

Output: (p Xr) matrix C =A-B two (n x n) matrices requires n’
1 fori:=1topdo multiplications. This can also be
2 forj:=1tordo done using 0(n*37°)

Cli,j] = 0; multiplications.

3
4 fork == 1toqgdo
5 Cli,j] = Cli,j] + Ali, k] - B[k, j]

Number of multiplications and additions: p - q - r

Algorithm Theory, WS 2013/14 Fabian Kuhn 14



Matrix-chain multiplication: Example
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Computation of the product A; 4, 4;, where

A : (50 x 5) matrix
A, : (5 x 100) matrix
A, : (100 x 10) matrix

a) Parenthesization ((A; 4,)A;) and (41 (4,A3)) require:

A= (A4, 4,): A" = (AyAs):
A'As: A A

Sum:

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Structure of an Optimal Parenthesization .
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e (A, ,):optimal parenthesization of A, - ...- A,

Forsome 1 <k <n: (A1 ) = (A1) - (Aks1.0))

 Any optimal solution contains optimal solutions for sub-problems
e Assume matrix 4; isa (d;_; X d;)-matrix

e Cost to solve sub-problem 4, - ...- A,., £ < r optimally: C(¢,71)

e Then:
C(a,b) = mkillb Clak)+C(k+1,b)+d, 1d; d,
as
Cla,a)=0

Algorithm Theory, WS 2013/14 Fabian Kuhn 16



Recursive Computation of Opt. Solution  _
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Compute Al . AZ . A3 . A4 . A5:

€50
cazy  Casp a4 @5 €ER  C@sy
€2D €@ CEAD CAS5D
€2 €3 €23 C@4 T2 €23)) €35)) CHs)
CaDCE CEPTBEH CRPTCEH TEHCHSD

Algorithm Theory, WS 2013/14 Fabian Kuhn 17



Using Meomization
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Compute Al . AZ . A3 . A4 . A5:

Compute A, - ...- A,:
e Each C(i,)), i < jis computed exactly once = 0(n?) values
e Each C(i,j) dir.dependson C(i,k), C(k,j)fori <k <j

Cost for each C(i,j): O(n) =2 overall time: 0(n3)

Algorithm Theory, WS 2013/14 Fabian Kuhn 18
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,Memoization” for increasing the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is
simply looked up and returned

(without repeated computation!).

e Computing the solution: For each sub-problem, store how the
value is obtained (according to which recursive rule).

Algorithm Theory, WS 2013/14 Fabian Kuhn 19



Dynamic Programming
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Dynamic programming / memoization can be applied if

e Optimal solution contains optimal solutions to sub-problems
(recursive structure)

e Number of sub-problems that need to be considered is small

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Remarks about matrix-chain multiplication
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1. There is an algorithm that determines an optimal
parenthesization in time

O(n -logn).

2. There is a linear time algorithm that determines a
parenthesization using at most

1.155-C(1,n)
multiplications.

Algorithm Theory, WS 2013/14 Fabian Kuhn 21
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Knapsack
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e nitems1,..,n, eachitem has weight w; and value v;
e Knapsack (bag) of capacity W

e Goal: pack items into knapsack such that total weight is at
most W/ and total value is maximized:

max z V;

iES
s.t. S€{1,...,n}and Ewi <Ww
i€ES

e E.g.:jobs of length w; and value v;, server available for W
time units, try to execute a set of jobs that maximizes the
total value

Algorithm Theory, WS 2013/14 Fabian Kuhn 22



Recursive Structure?
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e Optimal solution: O
e Ifné¢ 0:0PT(n) =0PT(n—1)

e Whatifn € 0?

— Taking n gives value v,
— But, n also occupies space w,, in the bag (knapsack)
— There is space for W — w,, total weight left!

OPT(n) = w,, + optimal solution with first n — 1 items
and knapsack of capacity W — w,,

Algorithm Theory, WS 2013/14 Fabian Kuhn 23



A More Complicated Recursion
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OPT(k, x): value of optimal solution with items 1, ..., k
and knapsack of capacity x

Recursion:

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Dynamic Programming Algorithm
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Set up table for all possible OPT(k, x)-values
e Assume that all weights w; are integers!

1 2 3 w

n

Algorithm Theory, WS 2013/14 Fabian Kuhn

Row i, column j:

OPT(i,j)

25



Example
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e 8items: (3,2),(2,4),(4,1),(5,6),(3,3), 94,3% (5,4),(6,6)
Knapsack capacity: 12 weight value

e OPT(k,x) = max{OPT(k—1,x),0PT(k—1,x —wy) + v}
1 2 3 4 5 6 7 8 9 101112

O N O U1 B W N =

Algorithm Theory, WS 2013/14 Fabian Kuhn 26



Running Time of Knapsack Algorithm
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Size of table: O(n - W)

Time per table entry: 0(1) - overall time: O(nW)

Computing solution (set of items to pick):
Follow < n arrows = 0(n) time (after filling table)

Note: Time depends on W > can be exponential in n...
And it is problematic if weights are not integers.

Algorithm Theory, WS 2013/14 Fabian Kuhn
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String Matching Problems
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Edit distance:

e For two given strings A and B, efficiently compute the
edit distance D(A, B) (# edit operations to transform A4 into B)

as well as a minimum sequence of edit operations that
transform A into B.

e Example: mathematician > multiplication:

mtlj_al:\ipfl_&tio/%n

1 C

Algorithm Theory, WS 2013/14 Fabian Kuhn 28



String Matching Problems
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Edit distance D(A4, B) (between strings A and B):

ma-them--atimician

multiplicatio--n

Approximate string matching:

For a given text T, a pattern P and a distance d, find all

substrings P’ of T with D(P, P") <d.

Sequence alignment:
Find optimal alignments of DNA / RNA / ... sequences.

GAGCA-CTTGGATTCTCGG
- --CACGTGG-A-ACT- - -

Algorithm Theory, WS 2013/14 Fabian Kuhn 29



Edit Distance
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Given: Two strings A = a,a, ...a,, and B = by b, ... b,

Goal: Determine the minimum number D (4, B) of edit
operations required to transform A into B

Edit operations:

a) Replace a character from string A by a character from B
b) Delete a character from string A

c) Insert a character from string B into A

ma-them--at cC1an

multirplicatio--n

Algorithm Theory, WS 2013/14 Fabian Kuhn 30



Edit Distance — Cost Model
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Cost for replacing character a by b: c(a,b) = 0

e (Capture insert, delete by allowinga = cor b = &:
— Cost for deleting character a: c(a, €)
— Cost for inserting character b: c(&, b)

* Triangle inequality:
c(a,c) <c(a,b)+c(b,c)
— each character is changed at most once!

1, ifa#b

e Unit cost model: c(a,b) = {O ifq = b

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Recursive Structure
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e Optimal “alignment” of strings (unit cost model)
bbcadfagikccm and abbagflrgikacc:

-bbcagfa-girtk-ccm

abb-ad*tfl g

e Consists of optimal “alignments” of sub-strings, e.g.:
-bbcagfa —gik-ccm

abb-adfl 2" rgikacc-

* Edit distance between A; ,, = a; ...a,, and By , = by ...

D(A,B) = mln{D (A1 k» B1 £’) + D(Ak+1 m» Bes1 n)}

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Computation of the Edit Distance
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let A, = a4 ...ay, By = by ...b, , and

Dy » == D(Ag, By)

Algorithm Theory, WS 2013/14

Fabian Kuhn
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Computation of the Edit Distance
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Three ways of ending an “alighment” between A, and B,:

1. ay isreplaced by by:
Dy,p = Dg—1,0-1 + c(ax, by)

2. ay is deleted:

Dy ¢ = Dy_1p + c(ag, €)

3. by isinserted:

Dy ¢ = Dy p—1 + c(&,by)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Computing the Edit Distance
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e Recurrence relation (for k, £ = 1)

(Dy—1p-1 + c(ag, bp)) (Dy_1p-1+1/0
Dy, =minsDy_1, +c(age) ;=min{Dg_1, +1 >
Drro-1 +c(ebyp) Dke-1 +1 )

Y
unit cost model

Algorithm Theory, WS 2013/14 Fabian Kuhn 35



Recurrence Relation for the Edit Distance
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Base cases:

DO,O = D(E, 8) =0

DO,j = D(E, B]) = DO,j—l + C(E, b])

Doy =D(A;,&) =D;_19+ c(a; &)

Recurrence relation:

(Dy_1,0-1 + c(ag, by))
D;; =min<{Dy_,, +c(ayé)

~\"

LJj
\Dk,f—l + C(E, bf) y,

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Order of solving the subproblems
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b, b, b; b,

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Algorithm for Computing the Edit Distance .

Algorithm Edit-Distance

Input: 2stringsA=a,..a,andB =b;..b,
Output: matrix D = (Dij)

1 D[0,0] := 0;

2fori:=1tomdo D|i,0] :=i;
3forj:=1tondoD|0,j] = j;
4fori:=1tomdo

5 forj:=1tondo

Dli—1,7] +1 \
6  D[i,j] =min{D[i,j—1] +1 s
KDl — 1,] — 1] + C(ai,bj)J

Algorithm Theory, WS 2013/14 Fabian Kuhn 38
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Example
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Computing the Edit Operations
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Algorithm Edit-Operations(i, j)
Input: matrix D (already computed)
Output: list of edit operations

1 ifi = 0andj = 0 then return empty list

ifi #0and D[i,j] = D[i — 1,j] + 1 then
return Edit-Operations(i — 1,j) o ,delete a;“

2
3
4 elseifj #0andDJi,j] = D[i,j — 1] + 1 then
5  return Edit-Operations(i,j — 1) o ,insert b;“
6 else //D[l,]] :D[l—l,]_1]+C(al,b])

7  if a; = b; then return Edit-Operations(i — 1,j — 1)

8 elsereturn Edit-Operations(i — 1,j — 1) o ,replace a; by b;“

Initial call: Edit-Operations(m,n)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Edit Operations
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a b a

011 {l 2] 3 5

b\ 1|1/ 1] 2 4

a2 (/1] 2|2 3

b|3 |2 |1/ 2 4

d| 4 |3 || 2| 2 4

a| 54| 3|3 3

Algorithm Theory, Ws 2013/14 Fabian Kufr
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Edit Distance: Summary
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Edit distance between two strings of length m and n can be
computed in O(mn) time.

Obtain the edit operations:
— for each cell, store which rule(s) apply to fill the cell
— track path backwards from cell (m, n)
— can also be used to get all optimal “alignments”

Unit cost model:
— interesting special case
— each edit operation costs 1

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Approximate String Matching
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Given: strings T = t;t, ... t,, (text) and P = p,p, ... p,,, (pattern).

Goal: Find an interval [, s], 1 < r < s < n such that the sub-string
T, ¢ == t, ...tg is the one with highest similarity to the pattern P:

arg min D (T,,’S, P)
1<r<s=<n
r S
T /

2

o/

/

Algorithm Theory, WS 2013/14 Fabian Kuhn 43



Approximate String Matching
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Naive Solution:

foralll <r<s<ndo
compute D(T g, P)

choose the minimum

Algorithm Theory, WS 2013/14
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Approximate String Matching
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A related problem:

* For each position s in the text and each position i in the
pattern compute the minimum edit distance E (i, s) between
P; = p; ...p; and any substring T;. ; of T that ends at position s.

T S

P; = pg ..p;

E(i,s)

Algorithm Theory, WS 2013/14 Fabian Kuhn 45



Approximate String Matching
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Three ways of ending optimal alighment between Tj, and P;:

1. tyisreplaced by p;:
Epi = Ep—1,-1 + c(tp, pi)

2. t,is deleted:
Epi = Ep_1,i + c(tp, &)

3. p;isinserted:

Ey; =Epi—q +c(ep;)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Approximate String Matching

Recurrence relation (unit cost model):

(Ep_1-1 + 1)
Ey;=min<{Ep1; +1;

Base cases:

E0,0 0
EO,i — i
Eiop =0

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Example

2
o |
m a t h e m a t i c S
N\
AN
N
m N
N \\ N\
N~ N
u
\ \
N
[
N\
t
\ N\
i
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Approximate String Matching
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e Optimal matching consists of optimal sub-matchings

e Optimal matching can be computed in O (mn) time

e Get matching(s):
— Start from minimum entry/entries in bottom row
— Follow path(s) to top row

e Algorithm to compute E (b, i) identical to edit distance
algorithm, except for the initialization of E (b, 0)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Related Problems from Bioinformatics
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Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid
seguences.

GA-CGGATTAG G
GATCGGAAT -0

Global vs. Local Alighment:
e Global alignment: find optimal alignment of 2 sequences

e Local alignment: find optimal alignment of sequence 1
(patter) with sub-sequence of sequence 2 (text)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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