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Dictionary:
e Operations: insert(key,value), delete(key), find(key)

 Implementations:
— Linked list: all operations take O (n) time (n: size of data structure)
— Balanced binary tree: all operations take O(logn) time
— Hash table: all operations take O(1) times (with some assumptions)

Stack (LIFO Queue):

e Operations: push, pull

e Linked list: O(1) for both operations
(FIFO) Queue:

e Operations: enqueue, dequeue

e Linked list: O(1) time for both operations

Here: Priority Queues (heaps), Union-Find data structure
Algorithm Theory, WS 2013/14 Fabian Kuhn 2



Dijkstra’s Algorithm
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Single-Source Shortest Path Problem:

e Given: graph G = (V, E) with edge weights w(e) > 0 fore € E
source nodes €V

e Goal: compute shortest paths fromstoallv eV

Dijkstra’s Algorithm:

1. Initialize d(s,s) = 0andd(s,v) = o forallv # s

2. All nodes are unmarked

3. Get unmarked node u which minimizes d (s, u):

4, Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}
5 mark node u

6. Until all nodes are marked

Algorithm Theory, WS 2013/14 Fabian Kuhn 3
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Implementation of Dijkstra’s Algorithm
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Dijkstra’s Algorithm:

1. Initialize d(s,s) = 0andd(s,v) = o forallv # s

2. All nodes v # s are unmarked

3. Get unmarked node u which minimizes d (s, u):

4, Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}

5. mark node u

6. Until all nodes are marked

Algorithm Theory, WS 2013/14 Fabian Kuhn 12



Priority Queue / Heap
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e Stores (key,data) pairs (like dictionary)
e But, different set of operations:

e |nitialize-Heap: creates new empty heap

e |s-Empty: returns true if heap is empty

e Insert(key, data): inserts (key,data)-pair, returns pointer to entry
e Get-Min: returns (key,data)-pair with minimum key
 Delete-Min: deletes minimum (key,data)-pair
 Decrease-Key(entry,newkey): decreases key of entry to newkey
e Merge: merges two heaps into one

Algorithm Theory, WS 2013/14 Fabian Kuhn 13



Implementation of Dijkstra’s Algorithm
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Store nodes in a priority queue, use d (s, v) as keys:
1. Initialize d(s,s) = 0andd(s,v) = o forallv # s
2. All nodes v + s are unmarked

3. Get unmarked node u which minimizes d (s, u):

4, mark node u

5. Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}

6. Until all nodes are marked

Algorithm Theory, WS 2013/14 Fabian Kuhn 14



Analysis

Number of priority queue operations for Dijkstra:

e Initialize-Heap: 1

e Is-Empty: V]
* Insert: V]
e Get-Min: V]

e Delete-Min: V]
e Decrease-Key: |E|

e Merge: 0

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Priority Queue Implementation
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Implementation as min-heap: o

—> complete binary tree, o o
e.g., stored in an array

* Initialize-Heap: 0(1) o o e o

* Is-Empty: o(1) e @

* Insert: O(logn)

* Get-Min: 0(1)

e Delete-Min: O(logn)

* Decrease-Key: O(logn)

* Merge (heaps of size mandn, m < n): 0(mlogn)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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e Can we do better?

e Cost of Dijkstra with complete binary min-heap implementation:

O(|E[log|V])
e Can be improved if we can make decrease-key cheaper...
e Cost of merging two heaps is expensive

e We will get there in two steps:

Binomial heap = Fibonacci heap

Algorithm Theory, WS 2013/14 Fabian Kuhn 17



Definition: Binomial Tree
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Binomial tree B;, of order k (n = 0):

By = O

By =

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Binomial Trees
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B
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Properties
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1. Tree B, has 2% nodes

2. Height of tree By is k

3. Rootdegree of By is k

4. In By, there are exactly (’:) nodes at depth i

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Binomial Coefficients
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e Binomial coefficient:

k
(i) : # of i — element — subsets of a set of size k

* Property: (lf) = (lf__ll) + (kzl) Pascal triangle:

1
1 1
1 2 1
1 3 3 1
14 6 4 1
1 510 10 5 1

Algorithm Theory, WS 2013/14 Fabian Kuhn 21



Number of Nodes at Depth i in By
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Claim: In By, there are exactly ('f) nodes at depth i

Algorithm Theory, WS 2013/14

Fabian Kuhn
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Binomial Heap
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e Keys are stored in nodes of binomial trees of different order

n nodes: there is a binomial tree B; of order i iff
bit i of base-2 representation of nis 1.

 Min-Heap Property:

Key of node v < keys of all nodes in sub-tree of v

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Example
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e 11 keys: {2,5,8,9,12,14,17,18, 20,22, 25}

e Binary representation of n: (11), = 1011

- trees B, B, and B; present
B

(5)
9 19 @

12 (8 @5

22
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Child-Sibling Representation
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Structure of a node:

/

parent /

degree

child/ sibling

Algorithm Theory, WS 2013/14

Fabian Kuhn
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Link Operation
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e Unite two binomial trees of the same order to one tree:

l;nEBlin::>l;n+l

e Time: O(1 _
(1) : _
15 20
|_eo| o —--»T o
o /b = =0 &
o/ ® [
25 40 22
BZ BZ T o > o | @ o | o
'l
.
30
o | o
Algorithm Theory, WS 2013/14 Fabian Kuhn
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Merge Operation

Merging two binomial heaps:
e Fori =0,1,..,logn:

If there are 2 or 3 binomial trees B;: apply link operation to
merge 2 trees into one binomial tree B; 4

BO BS B6 B9 BlO Bll
Ql — )—2 ;—2 i :f\: : »( ) : >f i
B, Bs Bg Bio Bi. Time:
»( ) >
C2 > % 7_< O(logn)
Bl B7 BS B9 Bll BlZ

Algorithm Theory, WS 2013/14 Fabian Kuhn 27
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Operations

Initialize: create empty list of trees
Get minimum of queue: time O(1) (if we maintain a pointer)

Decrease-key at node v:

e Set key of node v to new key

e Swap with parent until min-heap property is restored
e Time: O(logn)

Insert key x into queue Q:
1. Create queue Q' of size 1 containing only x
2. Merge Q and Q'

e Time forinsert: O(logn)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Operations
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Delete-Min Operation:

1. Find tree B; with minimum root r

2. Remove B; from queue Q = queue Q'

3. Children of r form new queue Q"

4. Merge queues Q' and Q"

e Overall time: O(logn)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Delete-Min Example
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Complexities Binomial Heap
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Initialize-Heap: 0(1)

e Is-Empty: 0(1)
* Insert: O(logn)
e Get-Min: 0(1)

* Delete-Min:  O(logn)
* Decrease-Key: O(logn)

e Merge (heaps of size mandn, m < n): O(log n)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Can We Do Better?
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e Binomial heap:
insert, delete-min, and decrease-key cost O (logn)

* One of the operations insert or delete-min must cost (2(logn):

— Heap-Sort:
Insert n elements into heap, then take out the minimum n times

— (Comparison-based) sorting costs at least Q(nlogn).

e But maybe we can improve decrease-key and one of the other
two operations?

e Structure of binomial heap is not flexible:

— Simplifies analysis, allows to get strong worst-case bounds
— But, operations almost inherently need at least logarithmic time

Algorithm Theory, WS 2013/14 Fabian Kuhn 33



Fibonacci Heaps
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Lacy-merge variant of binomial heaps:
e Do not merge trees as long as possible...

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Variables:
e H.min: root of the tree containing the (a) minimum key

e H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

e H.size: number of nodes currently in H

Algorithm Theory, WS 2013/14 Fabian Kuhn 34



Trees in Fibonacci Heaps
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Structure of a single node v: /‘
parentl
T = key |degree ‘% 1
child/ mark
/

e v.child: points to circular, doubly linked and unordered list of
the children of v

e v.left, v.right: pointers to siblings (in doubly linked list)
e v.mark: will be used later...

Advantages of circular, doubly linked lists:
e Deleting an element takes constant time
e Concatenating two lists takes constant time

Algorithm Theory, WS 2013/14 Fabian Kuhn 35
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Simple (Lazy) Operations
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Initialize-Heap H:
e H.rootlist := H.min := null

Merge heaps H and H':
e concatenate root lists
e update H.min

Insert element e into H:
* create new one-node tree containing e 2> H'
* merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2013/14 Fabian Kuhn 37



Operation Delete-Min
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Delete the node with minimum key from H and return its element:

m = H.min;
if H.size > 0 then

remove H. min from H.rootlist;

add H.min. child (list) to H.rootlist
H.Consolidate();

A S

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. returnm

Algorithm Theory, WS 2013/14 Fabian Kuhn 38



Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:
e rank(v): degree of v

Tree T
e rank(T): rank (degree) of root node of T

Heap H:
e rank(H): maximum degree of any node in H

Assumption (n: number of nodes in H):
rank(H) < D(n)

— for a known function D (n)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Merging Two Trees
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Given: Heap-ordered trees T, T' with rank(T) = rank(T")

e Assume: min-key of T < min-key of T’

Operation link(T,T'): link
T / \ T'

e Removes tree T' from root list

and adds T’ to child list of T QKQ .................................. @KQ

e rank(T) :==rank(T) + 1
e T'.mark := false

T

Algorithm Theory, WS 2013/14 Fabian Kuhn 40



Consolidation of Root List
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Array A pointing to find roots with the same rank:

0 1 2 D(n)
Consolidate:

| _ Time:
for i := 0 to D(n) do A[i] := null; O(|H.rootlist|+D(n))

while H.rootlist + null do
T := “delete and return first element of H.rootlist”
while A[rank(T)] # null do
T' = Alrank(T)];
Alrank(T)] = null;
T :=link(T,T")
Alrank(T)| =T
Create new H.rootlist and H.min

Algorithm Theory, WS 2013/14 Fabian Kuhn 41
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Consolidate Example
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Consolidate Example

link
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Consolidate Example
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Consolidate Example

link
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Consolidate Example
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Consolidate Example

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Operation Decrease-Key
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Decrease-Key(v, x): (decrease key of node v to new value x)

if x = v. key then return;
v.key = x; update H. min,
if v € H.rootlist V x = v.parent. key then return
repeat
parent := v.parent;
H.cut(v);
v = parent;
until =(v.mark) Vv v € H.rootlist;

O 0 N O Uk WwhNhE

if v € H.rootlist then v.mark = true;

Algorithm Theory, WS 2013/14 Fabian Kuhn 48



Operation Cut(v)
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Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

if v & H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;
remove v from v.parent. child (list)
v.parent := null;
add v to H.rootlist

o U sEwWwhPeE

Algorithm Theory, WS 2013/14 Fabian Kuhn 49



Decrease-Key Example
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e Green nodes are marked

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Fibonacci Heap Marks
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History of a node v:
v is being linked to a node v.mark := false

a child of v is cut v.mark = true

a second child of v is cut H.cut(v)

* Hence, the boolean value v. mark indicates whether node v
has lost a child since the last time v was made the child of

another node.

Algorithm Theory, WS 2013/14 Fabian Kuhn 51



Cost of Delete-Min & Decrease-Key
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Delete-Min:

1. Delete min. root r and add r. child to H.rootlist
time: 0(1)

2. Consolidate H.rootlist
time: O(length of H.rootlist + D(n))

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

1. If new key < parent key, cut sub-tree of node v
time: 0(1)

2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearinn

Exercises: Both operations can take ®(n) time in the worst case!

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Cost of Delete-Min & Decrease-Key
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e Cost of delete-min and decrease-key can be O(n)...
— Seems a large price to pay to get insert and merge in O(1) time

 Maybe, the operations are efficient most of the time?

— It seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

e Can we show that the average cost per operation is small?

 We can =2 requires amortized analysis

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Amortization
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e Consider sequence 04, 05, ..., 0,, of n operations
(typically performed on some data structure D)

e ;: execution time of operation o;
e T:=1ty+t, + -+ t,: total execution time

 The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

e The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive

Algorithm Theory, WS 2013/14 Fabian Kuhn 54



Analysis of Algorithms
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e Best case

e \Worst case

* Average case

e Amortized worst case

What it the average cost of an operation
in a worst case sequence of operations?

Algorithm Theory, WS 2013/14 Fabian Kuhn 55



Example: Binary Counter
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Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000
1 00001 1
2 00010 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1
Algorithm Theory, WS 2013/14 Fabian Kuhn
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Accounting Method
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Observation:
e Eachincrement flips exactlyoneOintoal

0010001111 = 0010010000

Idea:

e Have a bank account (with initial amount 0)

e Paying x to the bank account costs x

 Take “money” from account to pay for expensive operations

Applied to binary counter:
e Flip from 0to 1: pay 1 to bank account (cost: 2)
e Flip from 1 to O: take 1 from bank account (cost: 0)

e Amount on bank account = number of ones
- We always have enough “money” to pay!

Algorithm Theory, WS 2013/14 Fabian Kuhn 57
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Accounting Method
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Op.

Counter

Cost

To Bank

From Bank

Net Cost

Credit

00000

00001

00010

00011

00100

00101

00110

00111

01000

O 00 N/ U B W N -

01001

[HEY
o

01010

N R D RPN R WL N R

Algorithm Theory, WS 2013/14
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Potential Function Method
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e Most generic and elegant way to do amortized analysis!

— But, also more abstract than the others...

e State of data structure / system: S € § (state space)

Potential function ®: S —» R,

e QOperation i:
— t;: actual cost of operation i
— §;: state after execution of operation i (Sy: initial state)
— @; := P(S;): potential after exec. of operation i
— a;: amortized cost of operation i:

a; =t +®; —P;_4

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Potential Function Method
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=
=
Operation i:
actual cost: t; amortized cost: a; = t; + ®; — D;_4

Overall cost:

n n

Pyt (Ya)+o0-o,

i=1 i

Algorithm Theory, WS 2013/14 Fabian Kuhn 60



Binary Counter: Potential Method
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e Potential function:
®: number of ones in current counter

Clearly, ®y = 0and ®; = Oforalli =0

e Actual cost t;:
= 1 flipfromOto1l
= ¢; — 1flipsfrom1toO

Potential difference: ®; — ;1 =1—-(t; — 1) =2 — t;

Amortized cost: a; = t; + ; —D;_; = 2

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Back to Fibonacci Heaps
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 Worst-case cost of a single delete-min or decrease-key
operation is Q(n)

e Can we prove a small worst-case amortized cost for
delete-min and decrease-key operations?

Remark:
e Data structure that allows operations Oy, ..., Oy,

* We say that operation 0, has amortized cost a,, if for every
execution the total time is

k
TSan-ap,
p=1

where n,, is the number of operations of type 0,

Algorithm Theory, WS 2013/14 Fabian Kuhn 62
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Amortized Cost of Fibonacci Heaps
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Initialize-heap, is-empty, get-min, insert, and merge
have worst-case cost O(1)

Delete-min has amortized cost O (logn)
Decrease-key has amortized cost O(1)

Starting with an empty heap, any sequence of n operations
with at most n; delete-min operations has total cost (time)

T =0n+nzlogn).

We will now need the marks...

Cost for Dijkstra: O(|E| + |V|log |V])

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Fibonacci Heaps: Marks
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Cycle of a node:

1. Node v is removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark = true

3. Second child of v is cut
node v is cut as well and moved to root list

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

Algorithm Theory, WS 2013/14 Fabian Kuhn 64
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Potential Function
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System state characterized by two parameters:
e R:number of trees (length of H.rootlist)
e M: number of marked nodes that are not in the root list

Potential function:

d =R+2M

Example:

e R=7,M=2 2> d=11

Algorithm Theory, WS 2013/14 Fabian Kuhn 65



Actual Time of Operations
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e Operations: initialize-heap, is-empty, insert, get-min, merge
actual time: 0(1)

— Normalize unit time such that

Linit) tis—empty» Linserts tget—min» tmerge <1

e Operation delete-min:
— Actual time: O(Iength of H.rootlist + D(n))

— Normalize unit time such that
tgel—min < D(n) + length of H.rootlist

e QOperation descrease-key:

— Actual time: O (length of path to next unmarked ancestor)
— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Amortized Times

UNI
FREIBURG

Assume operation i is of type:

e initialize-heap:
— actual time: t; < 1, potential: ®;_; = ®; =0
— amortized time: a; = t; + ¢; —P;_1 <1

* is-empty, get-min:
— actual time: t; < 1, potential: ®; = ®;_, (heap doesn’t change)
— amortized time: a; = t; + ¢; —P;_1 <1

° merge:
— Actualtime: t; <1
— combined potential of both heaps: ®; = &;_4
— amortized time: a; = t; + ¢; —P;_1 <1

Algorithm Theory, WS 2013/14 Fabian Kuhn 67



Amortized Time of Insert
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Assume that operation i is an insert operation:
e Actualtime:t; <1

 Potential function:

— M remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)

Mi — Mi—l! Ri — Ri—l + 1
Cbi — cDi—l + 1

e Amortized time:

=t 4+ P — D <2

Algorithm Theory, WS 2013/14 Fabian Kuhn 68



Amortized Time of Delete-Min
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Assume that operation i is a delete-min operation:
Actual time: t; < D(n) + |H.rootlist|

Potential function ® = R + 2M:
* R:changes from H.rootlist to at most D(n)
e M: (# of marked nodes that are not in the root list)

— no new marks

— if node v is moved away from root list, v. mark is set to false
—> value of M does not increase!

M; < M;_4, R; < Ri_1 + D(n) — |H.rootlist|
d; < P;,_; +D(n) — |H.rootlist|

Amortized Time:
a; = ti ~+ (l)i — q)i—l < ZD(n)

Algorithm Theory, WS 2013/14 Fabian Kuhn 69
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Amortized Time of Decrease-Key
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Assume that operation i is a decrease-key operation at node u:
Actual time: t; < length of path to next unmarked ancestor v

Potential function ® = R + 2M:
e Assume, node u and nodes uy, ..., U, are moved to root list

— U4, ..., Uy are marked and moved to root list, v. mark is set to true
e > k marked nodes go to root list, < 1 node gets newly marked
e Rgrowsby < k+ 1, M grows by 1 and is decreased by > k

Ri<Ri_,+k+1, M, <M_,+1—k
O, < +k+1D)-2k—1D)=d;_,+3—k

Amortized time:
ai:ti‘l‘(bi—(bi_lgk‘l‘l‘l‘B—k:‘l‘
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Complexities Fibonacci Heap

Initialize-Heap: 0(1)

e Is-Empty: 0(1)
* Insert: 0o(1)
e Get-Min: 0(1)

* Delete-Min: 0(D(n)) _
‘> amortized

e Decrease-Key: 0(1)

e Merge (heaps of sizemandn, m < n): 0(1)

 How large can D(n) get?

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Rank of Children
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Lemma:

Consider a node v of rank k and let uq, ..., u;be the children of v
in the order in which they were linked to v. Then,

rank(u;) > i — 2.

Proof:
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Size of Trees
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Fibonacci Numbers:
FO — O, F1

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with

rank k is at least Fj,».

Proof:

1,

Vk > Z:Fk — Fk—l + Fk—Z

e Si:minimum size of the sub-tree of a node of rank k

Algorithm Theory, WS 2013/14
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Size of Trees
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S, =2, Vk22:5k22+25i

e (Claim about Fibonacci numbers:

Algorithm Theory, WS 2013/14

k
VkZO:Fk+2 :1+ZFL
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Size of Trees
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k—2
So=1,5=2Vk=>2:5, =2+ ZSi,
i=0
e Claimoflemma: S, = Fj.»

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Size of Trees
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Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k
is at least Fj, ».

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

D(n) = 0(logn).
Proof:
e The Fibonacci numbers grow exponentially:

1 (/1445 [1-v5)\"
e ((50) -(50)

e ForD(n) = k, we need n > Fj., nodes.
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Summary: Binomial and Fibonacci Heaps
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initialize
insert
get-min
delete-min
decrease-key
merge

is-empty

Algorithm Theory, WS 2013/14

Binomial Heap

0o(1)
O(logn)
0(1)
O(logn)
O(log n)
O(logn)
0(1)

Fabian Kuhn

Fibonacci Heap

0(1)
0(1)
0(1)
O(logn) *
o(1)*
0(1)
0(1)

k o o
amortized time
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Minimum Spanning Trees
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Prim Algorithm:

Start with any node v (v is the initial component)

2. In each step:
Grow the current component by adding the minimum weight
edge e connecting the current component with any other node

Kruskal Algorithm:

1. Start with an empty edge set

2. In each step:
Add minimum weight edge e such that e does not close a cycle
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Implementation of Prim Algorithm
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Start at node s, very similar to Dijkstra’s algorithm:

1. Initialize d(s) = 0andd(v) = oo forallv # s
2. All nodes s = v are unmarked

3. Get unmarked node u which minimizes d(u):

4, Foralle = {u,v} € E, d(v) = min{d(v),w(e)}

5. mark node u

6. Until all nodes are marked

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Implementation of Prim Algorithm

Implementation with Fibonacci heap:
* Analysis identical to the analysis of Dijkstra’s algorithm:

O (n) insert and delete-min operations

O (m) decrease-key operations

e Runningtime: O(m + nlogn)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Kruskal Algorithm
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1 - . 1. Start with an
empty edge set

. (]
2. In each step:
14 Add minimum
weight edge e
2
7 ’8 . such that e does
16 31 not close a cycle

17 19
12

20
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Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

2. For each edge e:

if e does not close a cycle then

add e to the current solution

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Union-Find Data Structure
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Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements
e set of disjoint sets

Operations:

 make_set(x): create a new set that only contains element x

e find(x): return the set containing x

e union(x,y): merge the two sets containing x and y
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Implementation of Kruskal Algorithm
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1. [Initialization:
For each node v: make_set(v)

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. Foreach edge e = {u, v}:
if find(u) # find(v) then
add e to the current solution

union(u, v)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Managing Connected Components
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 Union-find data structure can be used more generally to manage
the connected components of a graph

... if edges are added incrementally

 make_set(v) for every node v
e find(v) returns component containing v

e union(u,v) merges the components of u and v
(when an edge is added between the components)

e (Can also be used to manage biconnected components
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Basic Implementation Properties
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Representation of sets:

e Everyset S of the partition is identified with a representative,
by one of its members x € S

Operations:
 make_set(x): x is the representative of the new set {x}

e find(x): return representative of set S, containing x

 union(x,y): unites the sets S, and S,, containing x and y and
returns the new representative of 5, U S,,
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Observations

UNI
FREIBURG

Throughout the discussion of union-find:

e n:total number of make_set operations
 m: total number of operations (make_set, find, and union)

Clearly:
* mz=2n

 There are at most n — 1 union operations

Remark:

e We assume that the n make_set operations are the first n
operations

— Does not really matter...
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Linked List Implementation
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Each set is implemented as a linked list:

e representative: first list element (all nodes point to first elem.)
in addition: pointer to first and last element

v | | |
—> 5 —12— 8 —43—> 1

i)

v | |
—> 9 — 15— 7

i)

e sets: {1,5,8,12,43},{7,9,15}; representatives: 5,9
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Linked List Implementation
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make_set(x):
* (Create list with one element:

time: 0(1) — > x

find(x):

* Return first list element: ,h| | |

time: 0(1)

>y—>a—>x—>b

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Linked List Implementation
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union(x, y):
e Append list of y to list of x:

; | | | § | |
——a— b — x — C U——)d—)e—>y

4 @ ‘
; i | | | |

——>a—>b—>x—>c—>d—>e—>y

iy

Time: O(length of list of y)
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Cost of Union (Linked List Implementation)
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Total cost for n — 1 union operations can be 0(n?):

* make_set(x,), make_set(x,), ..., make_set(x,,),
union(x;,,_1, X, ), union(x,,_,, X,_1), ..., union(xy, x)

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Weighted-Union Heuristic
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* In a bad execution, average cost per union can be 0(n)

 Problem: The longer list is always appended to the shorter one

Idea:
* |n each union operation, append shorter list to longer one!

Cost for union of sets S, and S: O(min{ISxI, |Sy|})

Theorem: The overall cost of m operations of which at most n are
make_set operations is O(m + nlogn).

Algorithm Theory, WS 2013/14 Fabian Kuhn 92
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Weighted-Union Heuristic
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Theorem: The overall cost of m operations of which at most n
are make_set operationsis O(m + nlogn).

Proof:
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Disjoint-Set Forests
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& @ @ @
ofillc
®

e Represent each set by a tree

e Representative of a set is the root of the tree
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Disjoint-Set Forests
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make_set(x): create new one-node tree @

find(x): follow parent point to root
(parent pointer to itself)

union(x, y): attach tree of x to tree of y

ALY
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Bad Sequence
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Bad sequence leads to tree(s) of depth ©(n)

* make_set(x,), make_set(x,), ..., make_set(x,,),
union(xy, x,), union(xy, x3), ..., union(x¢, x,,)
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Union-By-Size Heuristic
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Union of sets $; and S,:

* Root of trees representing S; and S,: r; and

e W.lo.g., assume that |S;| = |5, ]

e RootofS; US,: 1y (1, is attached to 7y as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case
cost of a find-operation is O(logn)

Proof:

Similar Strategy: union-by-rank
e rank: essentially the depth of a tree
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Union-Find Algorithms
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Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:
 make_set: worst-case cost 0(1)

e find : worst-case cost O(1)

e union :amortized worst-case cost O (logn)

Disjoint-Set Forest with Union-By-Size Heuristic:
* make_set: worst-case cost O(1)

e find : worst-case cost O (logn)

e union :worst-case cost O(logn)

Can we make this faster?

Algorithm Theory, WS 2013/14 Fabian Kuhn
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Path Compression During Find Operation
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1. ifa # a.parent then

2. a.parent = find(a.parent)
3. return a.parent
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Complexity With Path Compression
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When using only path compression (without union-by-rank):
m: total number of operations

e f of which are find-operations

 n of which are make_set-operations
- at most n — 1 are union-operations

Total cost: O (n +f- [log2+f/n nD =0(m+ f -logyym, n)
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Union-By-Size and Path Compression
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Theorem:

Using the combined union-by-rank and path compression
heuristic, the running time of m disjoint-set (union-find)
operations on n elements (at most n make_set-operations) is

O(m - a(m,n)),

Where a(m,n) is the inverse of the Ackermann function.
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Ackermann Function and its Inverse
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Ackermann Function:

Fork,f > 1,
(2¢, ifk=1,¢>1
Ak, 0) ={ Ak —1,2), ifk>1¢=1
A(k—1,A(k,¢t-1)), ifk>1¢>1

Inverse of Ackermann Function:

a(m,n) = min{k > 1| A(k,|"/5]) > log, n}
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Inverse of Ackermann Function
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* a(mn) =minfk = 1| A(k, [""/n]) > log, n}
m=>n= Ak, |™/n]) = A(k,1) = a(m,n) < min{k > 1|A(k, 1) > logn}

e A(1,%)=2¢ A(k,1)=Ak—1,2),
A(k,£) = A(k — 1,A(k, ¢ — 1))
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