

Chapter 4 Data Structures

Algorithm Theory WS 2013/14

Fabian Kuhn

Dictionary:

- Operations: insert(key,value), delete(key), find(key)
- Implementations:
 - Linked list: all operations take O(n) time (n: size of data structure)
 - Balanced binary tree: all operations take $O(\log n)$ time
 - Hash table: all operations take O(1) times (with some assumptions)

Stack (LIFO Queue):

- Operations: push, pull
- Linked list: O(1) for both operations

(FIFO) Queue:

- Operations: enqueue, dequeue
- Linked list: O(1) time for both operations

Here: Priority Queues (heaps), Union-Find data structure

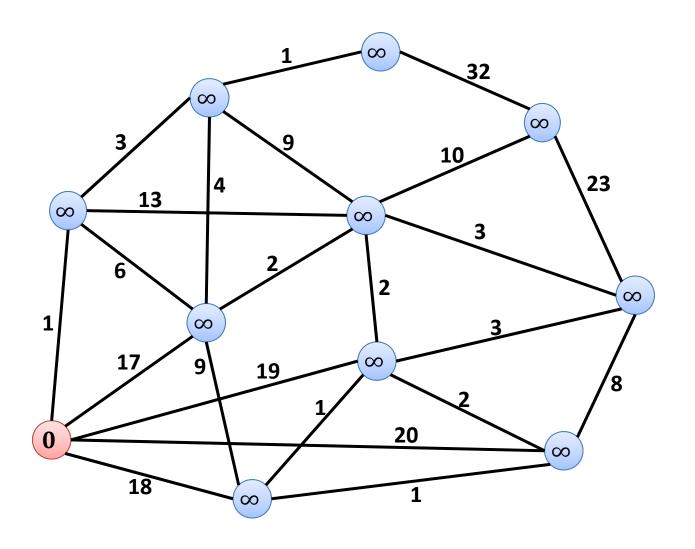
Dijkstra's Algorithm

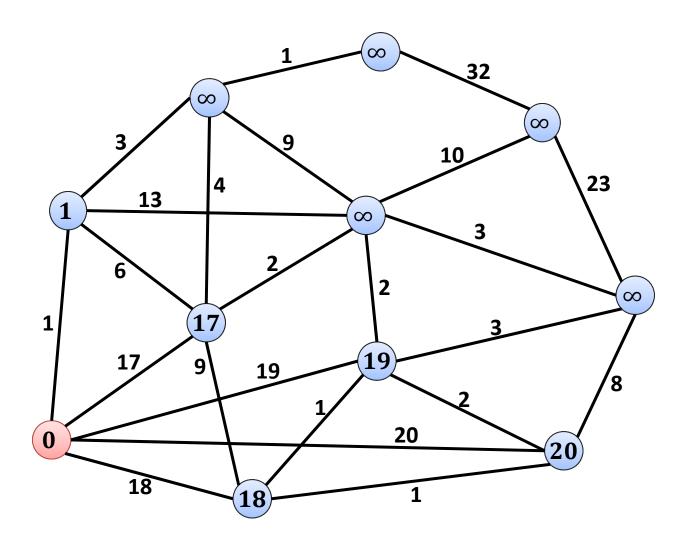
Single-Source Shortest Path Problem:

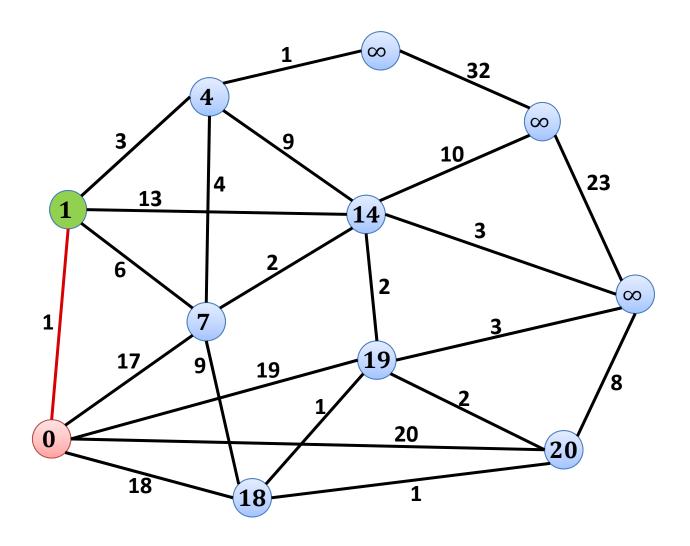
- **Given:** graph G = (V, E) with edge weights $w(e) \ge 0$ for $e \in E$ source node $s \in V$
- Goal: compute shortest paths from s to all $v \in V$

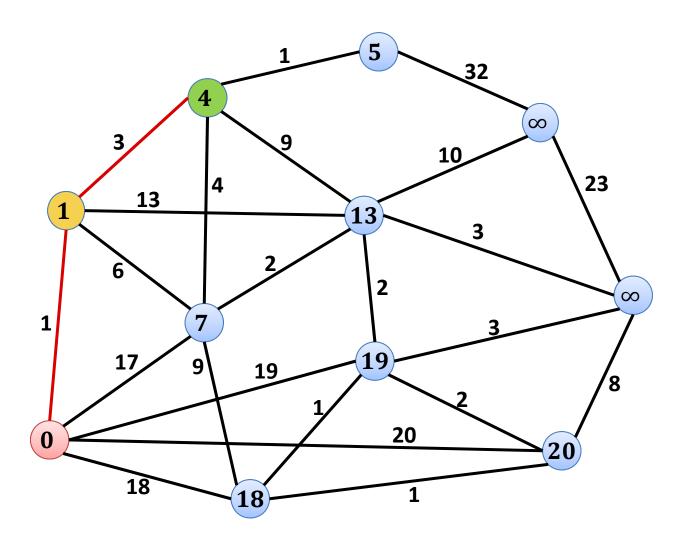
Dijkstra's Algorithm:

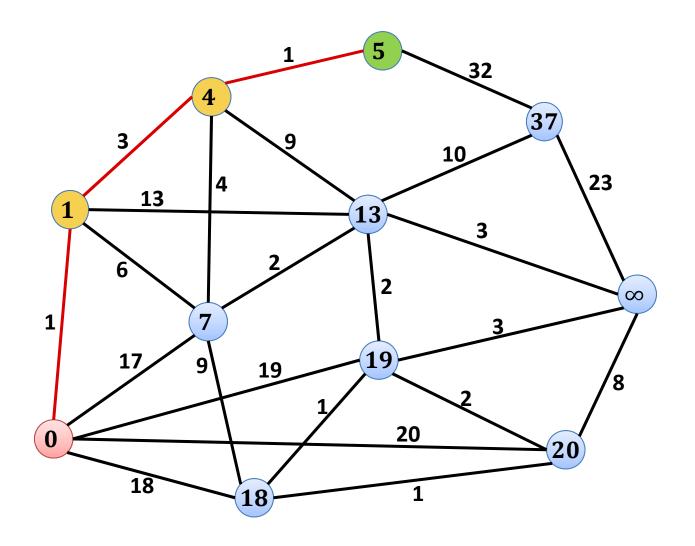
- 1. Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- All nodes are unmarked
- 3. Get unmarked node u which minimizes d(s, u):
- 4. For all $e = \{u, v\} \in E$, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$
- 5. mark node u
- 6. Until all nodes are marked

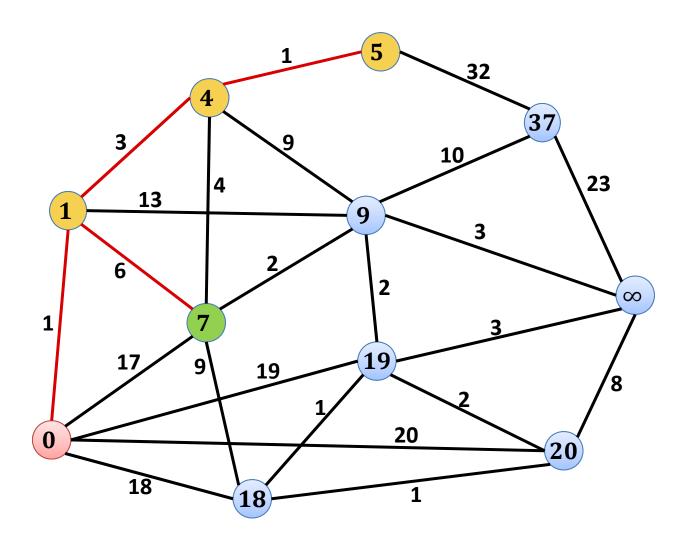


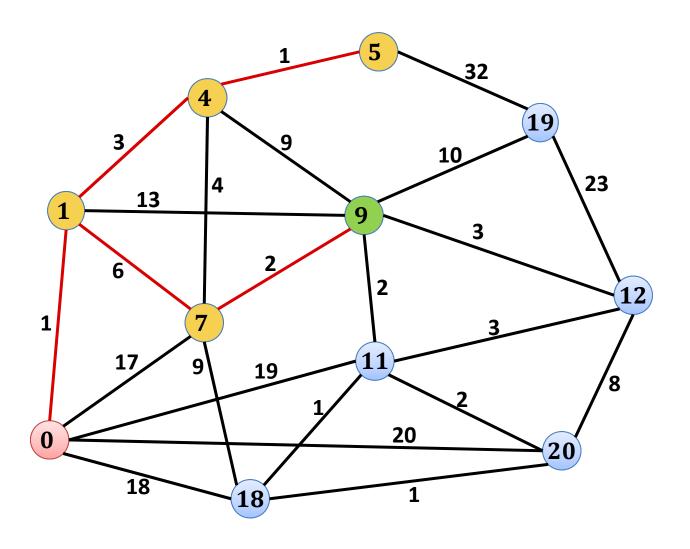


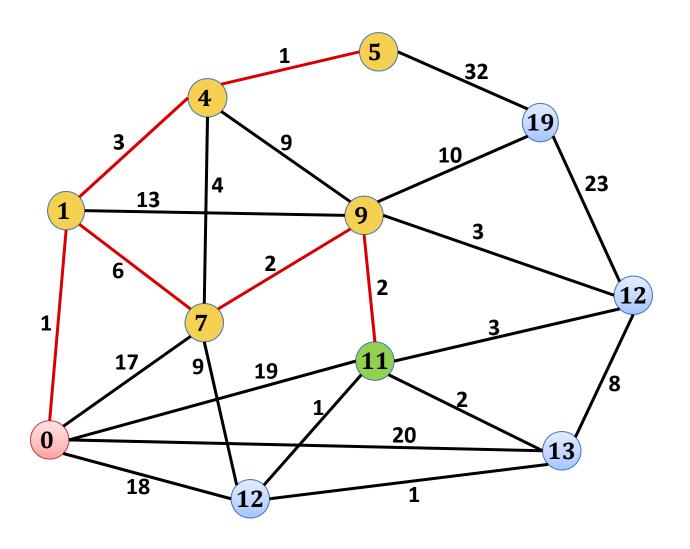












Implementation of Dijkstra's Algorithm

Dijkstra's Algorithm:

- 1. Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- 2. All nodes $v \neq s$ are unmarked

- 3. Get unmarked node u which minimizes d(s, u):
- 4. For all $e = \{u, v\} \in E$, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$
- 5. mark node u

6. Until all nodes are marked

Priority Queue / Heap

- Stores (key,data) pairs (like dictionary)
- But, different set of operations:
- Initialize-Heap: creates new empty heap
- Is-Empty: returns true if heap is empty
- Insert(key,data): inserts (key,data)-pair, returns pointer to entry
- **Get-Min**: returns (*key,data*)-pair with minimum *key*
- **Delete-Min**: deletes minimum (*key,data*)-pair
- **Decrease-Key**(*entry*, *newkey*): decreases *key* of *entry* to *newkey*
- Merge: merges two heaps into one

Implementation of Dijkstra's Algorithm

Store nodes in a priority queue, use d(s, v) as keys:

- 1. Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- 2. All nodes $v \neq s$ are unmarked

- 3. Get unmarked node u which minimizes d(s, u):
- 4. mark node u
- 5. For all $e = \{u, v\} \in E$, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$
- 6. Until all nodes are marked

Analysis

Number of priority queue operations for Dijkstra:

• Initialize-Heap: 1

• Is-Empty: |V|

• Insert: **V**

• Get-Min: V

• Delete-Min: V

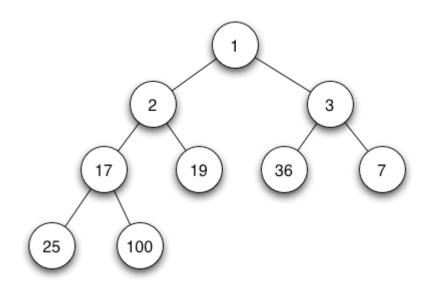
• Decrease-Key: |E|

• Merge: 0

Priority Queue Implementation

Implementation as min-heap:

- → complete binary tree,e.g., stored in an array
- Initialize-Heap: **0**(1)
- Is-Empty: O(1)
- Insert: $O(\log n)$
- Get-Min: o(1)
- Delete-Min: $O(\log n)$
- Decrease-Key: $O(\log n)$
- Merge (heaps of size m and $n, m \le n$): $O(m \log n)$



Better Implementation

- Can we do better?
- Cost of Dijkstra with complete binary min-heap implementation:

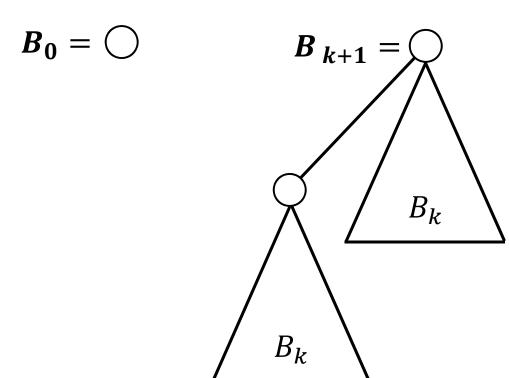
$$O(|E|\log|V|)$$

- Can be improved if we can make decrease-key cheaper...
- Cost of merging two heaps is expensive
- We will get there in two steps:

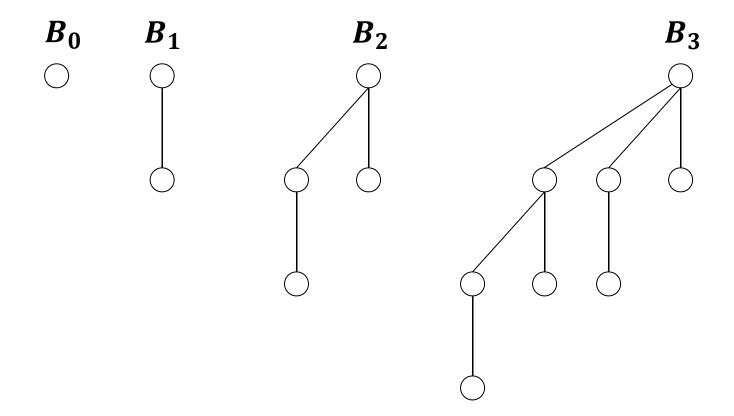
Binomial heap → Fibonacci heap

Definition: Binomial Tree

Binomial tree B_k of order $k \ (n \ge 0)$:



Binomial Trees



Properties

1. Tree B_k has 2^k nodes

2. Height of tree B_k is k

3. Root degree of B_k is k

4. In B_k , there are exactly $\binom{k}{i}$ nodes at depth i

Binomial Coefficients

Binomial coefficient:

$$\binom{k}{i}$$
: # of i — element — subsets of a set of size k

• Property: $\binom{k}{i} = \binom{k-1}{i-1} + \binom{k-1}{i}$

Pascal triangle:

Number of Nodes at Depth i in B_k

Claim: In B_k , there are exactly $\binom{k}{i}$ nodes at depth i

Binomial Heap

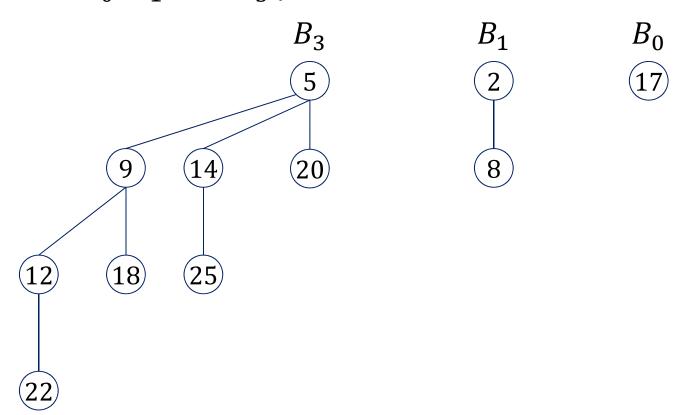
Keys are stored in nodes of binomial trees of different order

 \boldsymbol{n} nodes: there is a binomial tree B_i of order i iff bit i of base-2 representation of n is 1.

Min-Heap Property:

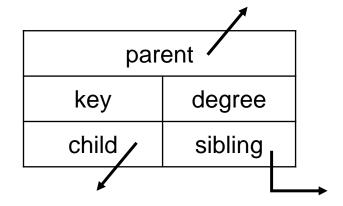
Key of node $v \leq$ keys of all nodes in sub-tree of v

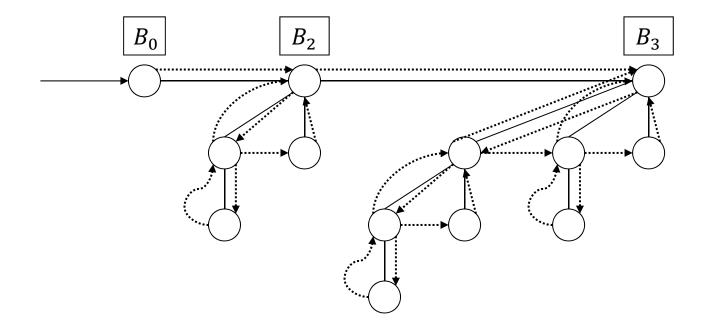
- 11 keys: {2, 5, 8, 9, 12, 14, 17, 18, 20, 22, 25}
- Binary representation of n: $(11)_2 = 1011$ \rightarrow trees B_0 , B_1 , and B_3 present



Child-Sibling Representation

Structure of a node:



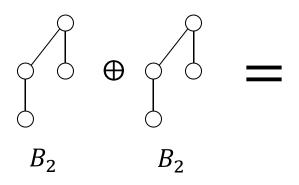


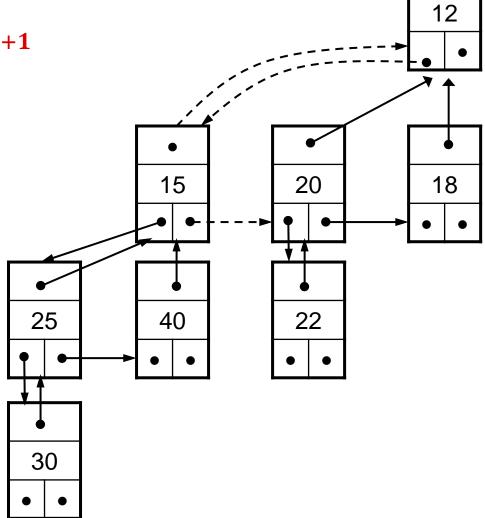
Link Operation

• Unite two binomial trees of the same order to one tree:

 $B_n \oplus B_n \Rightarrow B_{n+1}$

• Time: **0**(1)

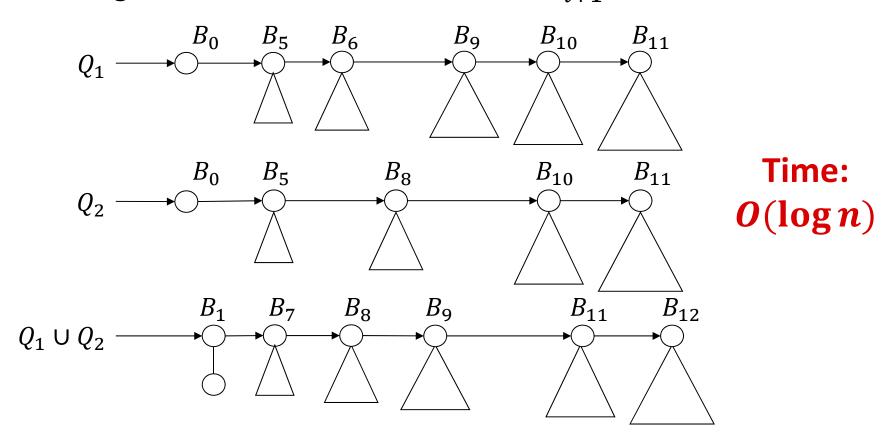


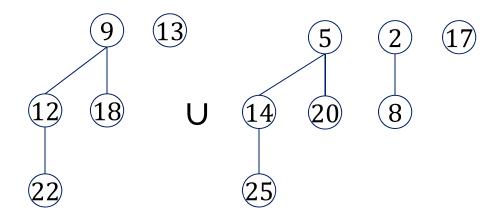


Merge Operation

Merging two binomial heaps:

• For $i = 0, 1, ..., \log n$: If there are 2 or 3 binomial trees B_i : apply link operation to merge 2 trees into one binomial tree B_{i+1}





Operations

Initialize: create empty list of trees

Get minimum of queue: time O(1) (if we maintain a pointer)

Decrease-key at node v:

- Set key of node v to new key
- Swap with parent until min-heap property is restored
- Time: $O(\log n)$

Insert key x into queue Q:

- 1. Create queue Q' of size 1 containing only x
- 2. Merge Q and Q'
- Time for insert: $O(\log n)$

Operations

Delete-Min Operation:

1. Find tree B_i with minimum root r

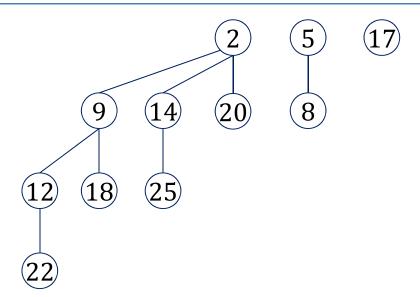
2. Remove B_i from queue $Q \rightarrow$ queue Q'

3. Children of r form new queue Q''

4. Merge queues Q' and Q''

• Overall time: $O(\log n)$

Delete-Min Example



Complexities Binomial Heap

• Initialize-Heap: O(1)

• Is-Empty: O(1)

• Insert: $O(\log n)$

• Get-Min: **0**(1)

• Delete-Min: $O(\log n)$

• Decrease-Key: $O(\log n)$

• Merge (heaps of size m and $n, m \le n$): $O(\log n)$

Can We Do Better?

- Binomial heap: insert, delete-min, and decrease-key cost $O(\log n)$
- One of the operations insert or delete-min must cost $\Omega(\log n)$:
 - Heap-Sort: Insert n elements into heap, then take out the minimum n times
 - (Comparison-based) sorting costs at least $\Omega(n \log n)$.
- But maybe we can improve decrease-key and one of the other two operations?
- Structure of binomial heap is not flexible:
 - Simplifies analysis, allows to get strong worst-case bounds
 - But, operations almost inherently need at least logarithmic time

Fibonacci Heaps

Lacy-merge variant of binomial heaps:

Do not merge trees as long as possible...

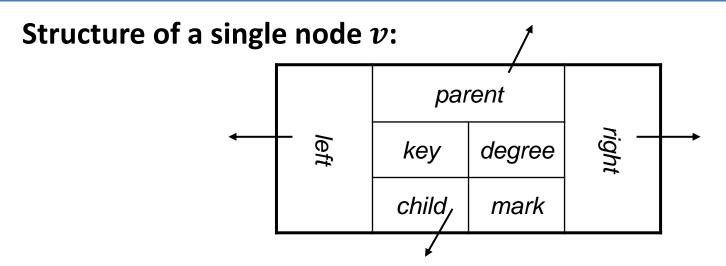
Structure:

A Fibonacci heap H consists of a collection of trees satisfying the min-heap property.

Variables:

- *H.min*: root of the tree containing the (a) minimum key
- H.rootlist: circular, doubly linked, unordered list containing the roots of all trees
- *H. size*: number of nodes currently in *H*

Trees in Fibonacci Heaps



- v.child: points to circular, doubly linked and unordered list of the children of v
- v.left, v.right: pointers to siblings (in doubly linked list)
- v.mark: will be used later...

Advantages of circular, doubly linked lists:

- Deleting an element takes constant time
- Concatenating two lists takes constant time

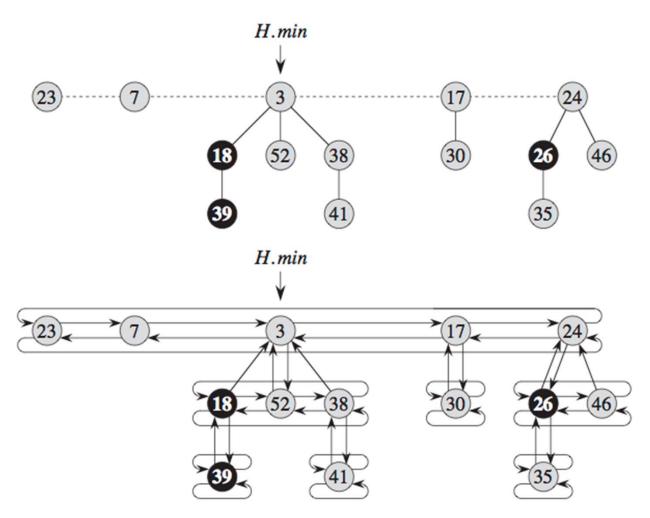


Figure: Cormen et al., Introduction to Algorithms

Simple (Lazy) Operations

Initialize-Heap *H*:

• H.rootlist := H.min := null

Merge heaps H and H':

- concatenate root lists
- update *H.min*

Insert element *e* into *H*:

- create new one-node tree containing $e \rightarrow H'$
- merge heaps H and H'

Get minimum element of *H*:

• return *H.min*

Operation Delete-Min

Delete the node with minimum key from *H* and return its element:

```
    m := H.min;
    if H.size > 0 then
    remove H.min from H.rootlist;
    add H.min.child (list) to H.rootlist
    H.Consolidate();
    // Repeatedly merge nodes with equal degree in the root list // until degrees of nodes in the root list are distinct. // Determine the element with minimum key
```

6. **return** *m*

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node *v*:

• rank(v): degree of v

Tree *T*:

• rank(T): rank (degree) of root node of T

Heap H:

• rank(H): maximum degree of any node in H

Assumption (n: number of nodes in H):

$$rank(H) \leq D(n)$$

- for a known function D(n)

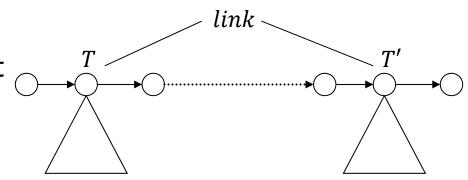
Merging Two Trees

Given: Heap-ordered trees T, T' with rank(T) = rank(T')

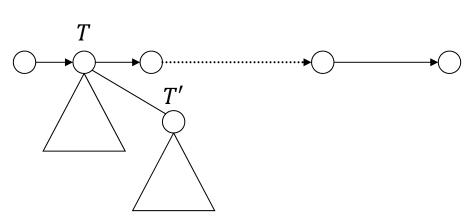
• Assume: min-key of T < min-key of T'

Operation link(T, T'):

 Removes tree T' from root list and adds T' to child list of T



- rank(T) := rank(T) + 1
- T'. mark := false



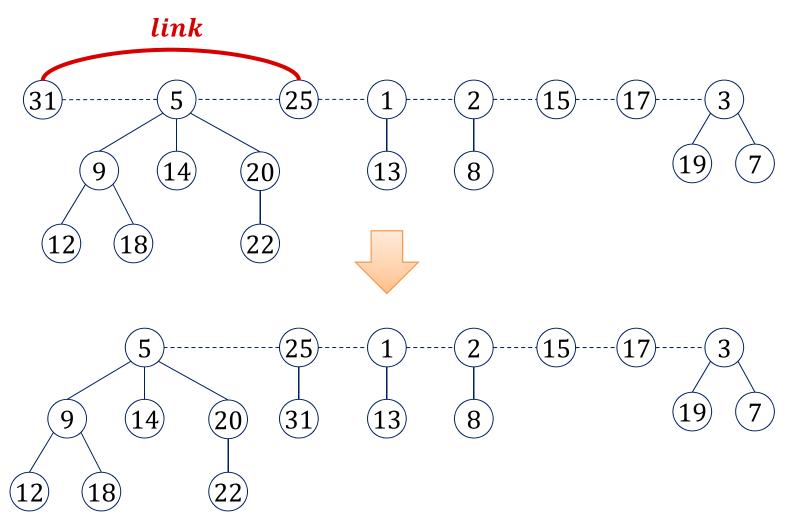
Consolidation of Root List

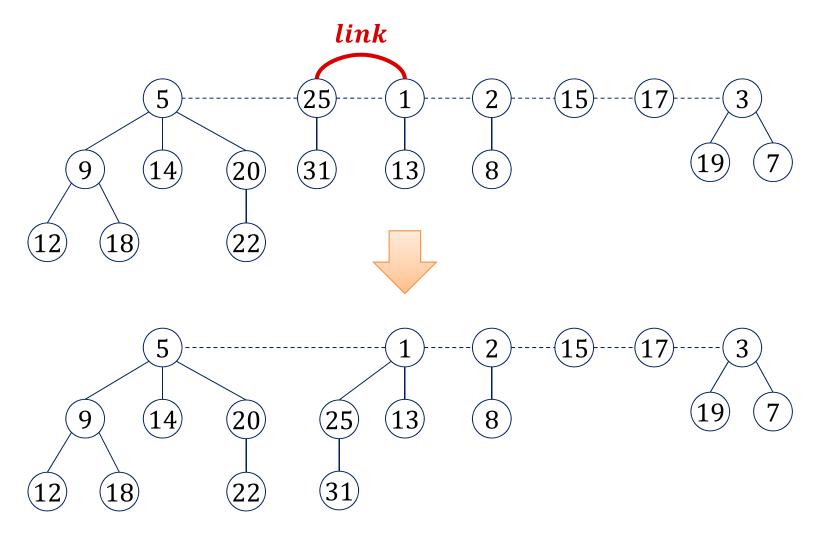
Array A pointing to find roots with the same rank:

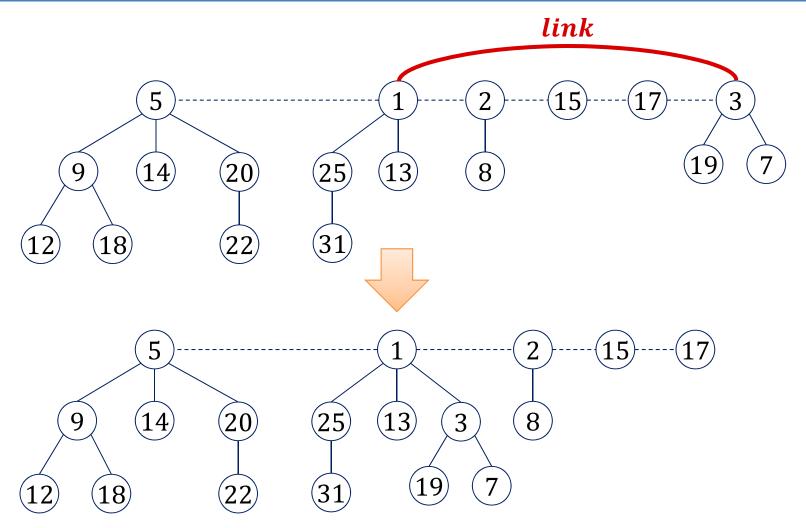
Consolidate:

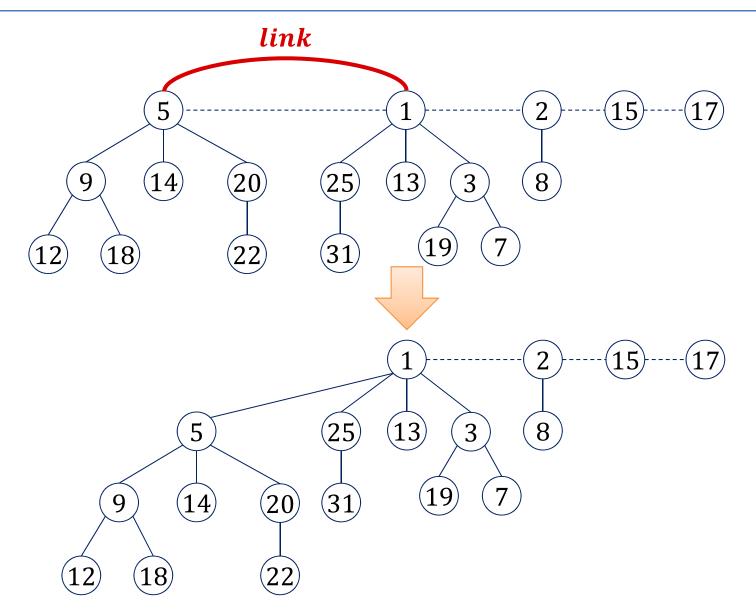
- 1. for i := 0 to D(n) do A[i] := null;
- 2. while $H.rootlist \neq null do$

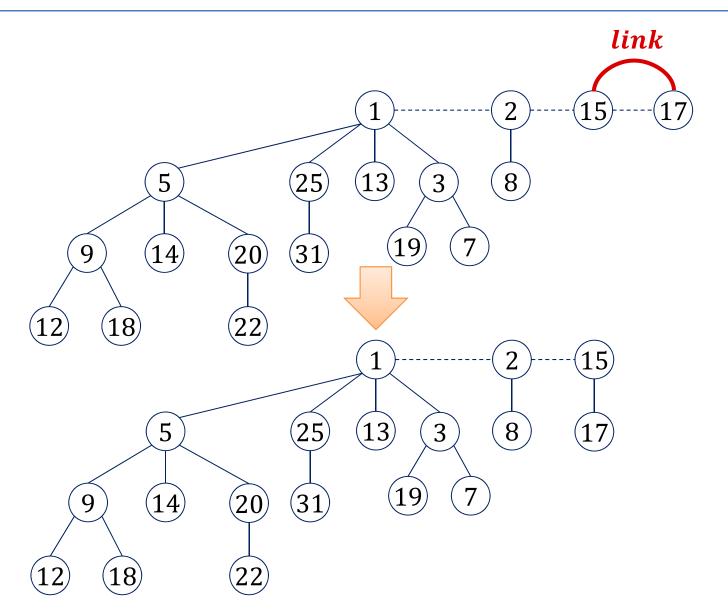
- Time: O(|H.rootlist| + D(n))
- 3. T := "delete and return first element of H.rootlist"
- 4. while $A[rank(T)] \neq \text{null do}$
- 5. $T' \coloneqq A[rank(T)];$
- 6. A[rank(T)] := null;
- 7. T := link(T, T')
- 8. $A[rank(T)] \coloneqq T$
- 9. Create new *H*. rootlist and *H*. min

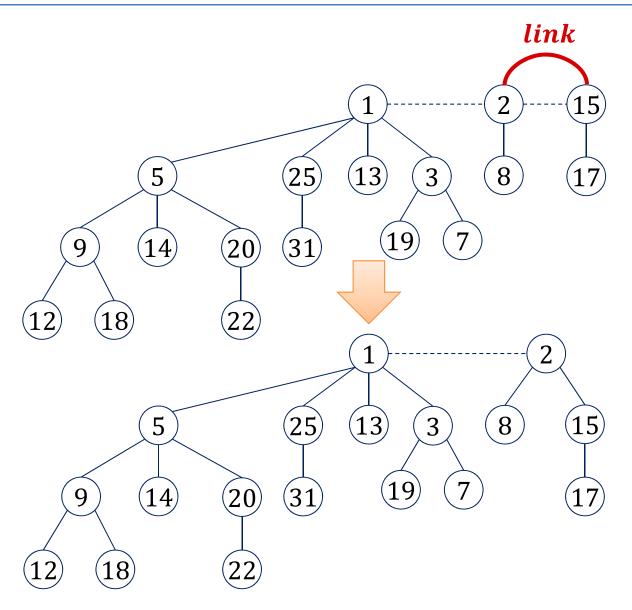












Operation Decrease-Key

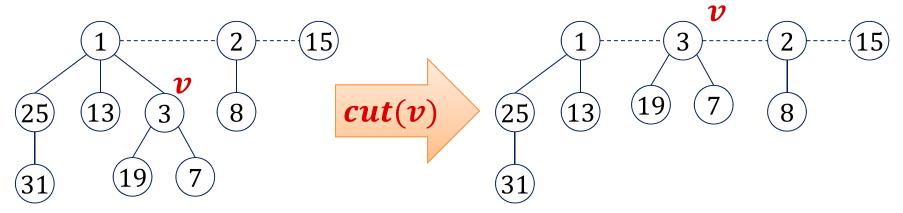
Decrease-Key(v, x): (decrease key of node v to new value x)

```
    if x ≥ v.key then return;
    v.key := x; update H.min;
    if v ∈ H.rootlist ∨ x ≥ v.parent.key then return
    repeat
    parent := v.parent;
    H.cut(v);
    v := parent;
    until ¬(v.mark) ∨ v ∈ H.rootlist;
    if v ∉ H.rootlist then v.mark := true;
```

Operation Cut(v)

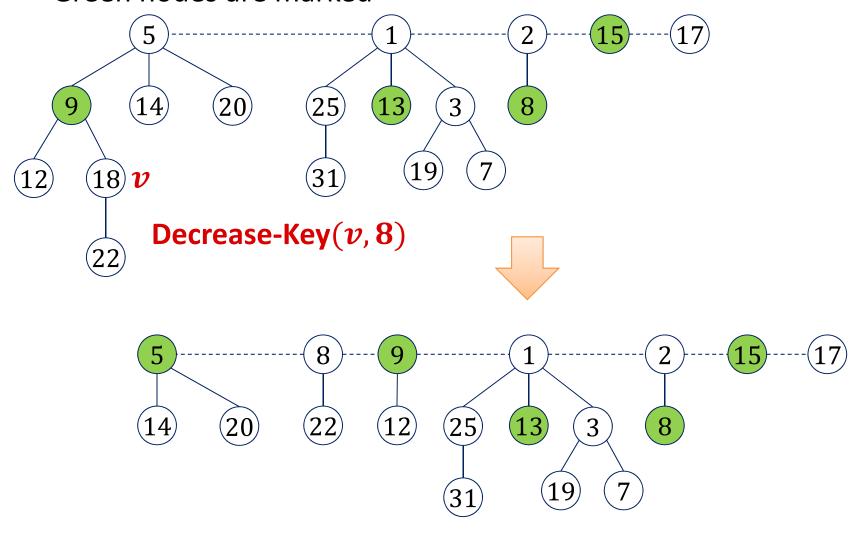
Operation H.cut(v):

- Cuts v's sub-tree from its parent and adds v to rootlist
- 1. if $v \notin H.rootlist$ then
- 2. // cut the link between v and its parent
- 3. rank(v.parent) = rank(v.parent) 1;
- 4. remove v from v. parent. child (list)
- 5. v.parent := null;
- 6. add v to H. rootlist



Decrease-Key Example

Green nodes are marked



Fibonacci Heap Marks

History of a node v:

v is being linked to a node v. mark := false

a child of v is cut $\longrightarrow v$. mark := true

a second child of v is cut \longrightarrow H. cut(v)

• Hence, the boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.

Cost of Delete-Min & Decrease-Key

Delete-Min:

- 1. Delete min. root r and add r. child to H. rootlist time: O(1)
- 2. Consolidate H.rootlisttime: O(length of H.rootlist + D(n))
- Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

- 1. If new key < parent key, cut sub-tree of node v time: O(1)
- Cascading cuts up the tree as long as nodes are marked time: O(number of consecutive marked nodes)
- Step 2 can potentially be linear in n

Exercises: Both operations can take $\Theta(n)$ time in the worst case!

Cost of Delete-Min & Decrease-Key

- Cost of delete-min and decrease-key can be $\Theta(n)$...
 - Seems a large price to pay to get insert and merge in O(1) time
- Maybe, the operations are efficient most of the time?
 - It seems to require a lot of operations to get a long rootlist and thus,
 an expensive consolidate operation
 - In each decrease-key operation, at most one node gets marked:
 We need a lot of decrease-key operations to get an expensive decrease-key operation
- Can we show that the average cost per operation is small?
- We can → requires amortized analysis

Amortization

- Consider sequence $o_1, o_2, ..., o_n$ of n operations (typically performed on some data structure D)
- t_i : execution time of operation o_i
- $T := t_1 + t_2 + \cdots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
 - → average execution time per operation might be small in the worst case, even if single operations can be expensive

Analysis of Algorithms

- Best case
- Worst case
- Average case
- Amortized worst case

What it the average cost of an operation in a worst case sequence of operations?

Example: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation	Counter Value	Cost
	00000	
1	00001	1
2	000 10	2
3	0001 <mark>1</mark>	1
4	00 100	3
5	0010 <mark>1</mark>	1
6	001 10	2
7	0011 <mark>1</mark>	1
8	01000	4
9	0100 <mark>1</mark>	1
10	010 10	2
11	0101 1	1
12	01 100	3
13	0110 <mark>1</mark>	1

Accounting Method

Observation:

Each increment flips exactly one 0 into a 1

 $00100011111 \Rightarrow 0010010000$

Idea:

- Have a bank account (with initial amount 0)
- Paying x to the bank account costs x
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from 0 to 1: pay 1 to bank account (cost: 2)
- Flip from 1 to 0: take 1 from bank account (cost: 0)
- Amount on bank account = number of ones
 - → We always have enough "money" to pay!

Accounting Method

Op.	Counter	Cost	To Bank	From Bank	Net Cost	Credit
	00000					
1	00001	1				
2	00010	2				
3	00011	1				
4	00100	3				
5	00101	1				
6	00110	2				
7	00111	1				
8	01000	4				
9	01001	1				
10	01010	2				

Potential Function Method

- Most generic and elegant way to do amortized analysis!
 - But, also more abstract than the others...
- State of data structure / system: $S \in \mathcal{S}$ (state space)

Potential function $\Phi: \mathcal{S} \to \mathbb{R}_{\geq 0}$

• Operation i:

- $-t_i$: actual cost of operation i
- S_i : state after execution of operation i (S_0 : initial state)
- $-\Phi_i := \Phi(S_i)$: potential after exec. of operation i
- a_i : amortized cost of operation i:

$$a_i \coloneqq t_i + \Phi_i - \Phi_{i-1}$$

Potential Function Method

Operation *i*:

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

Overall cost:

$$T \coloneqq \sum_{i=1}^{n} t_i = \left(\sum_{i=1}^{n} a_i\right) + \Phi_0 - \Phi_n$$

Binary Counter: Potential Method

Potential function:

Φ: number of ones in current counter

- Clearly, $\Phi_0 = 0$ and $\Phi_i \ge 0$ for all $i \ge 0$
- Actual cost t_i :
 - 1 flip from 0 to 1
 - $t_i 1$ flips from 1 to 0
- Potential difference: $\Phi_i \Phi_{i-1} = 1 (t_i 1) = 2 t_i$
- Amortized cost: $a_i = t_i + \Phi_i \Phi_{i-1} = 2$

Back to Fibonacci Heaps

- Worst-case cost of a single delete-min or decrease-key operation is $\Omega(n)$
- Can we prove a small worst-case amortized cost for delete-min and decrease-key operations?

Remark:

- Data structure that allows operations O_1, \dots, O_k
- We say that operation O_p has amortized cost a_p if for every execution the total time is

$$T \le \sum_{p=1}^{\kappa} n_p \cdot a_p \,,$$

where n_p is the number of operations of type \mathcal{O}_p

Amortized Cost of Fibonacci Heaps

- Initialize-heap, is-empty, get-min, insert, and merge have worst-case cost O(1)
- Delete-min has amortized cost $O(\log n)$
- Decrease-key has amortized cost O(1)
- Starting with an empty heap, any sequence of n operations with at most n_d delete-min operations has total cost (time)

$$T = O(n + n_d \log n).$$

- We will now need the marks...
- Cost for Dijkstra: $O(|E| + |V| \log |V|)$

Fibonacci Heaps: Marks

Cycle of a node:

1. Node v is removed from root list and linked to a node

v.mark = false

2. Child node u of v is cut and added to root list

v.mark = true

3. Second child of v is cut

node v is cut as well and moved to root list

The boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.

Potential Function

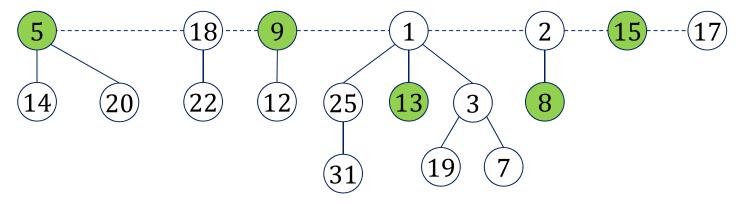
System state characterized by two parameters:

- R: number of trees (length of H.rootlist)
- M: number of marked nodes that are not in the root list

Potential function:

$$\Phi \coloneqq R + 2M$$

Example:



•
$$R = 7, M = 2 \rightarrow \Phi = 11$$

Actual Time of Operations

• Operations: initialize-heap, is-empty, insert, get-min, merge

```
actual time: O(1)
```

Normalize unit time such that

$$t_{init}, t_{is-empty}, t_{insert}, t_{get-min}, t_{merge} \leq 1$$

- Operation *delete-min*:
 - Actual time: O(length of H.rootlist + D(n))
 - Normalize unit time such that

$$t_{del-min} \le D(n) + \text{length of } H.rootlist$$

- Operation descrease-key:
 - Actual time: O(length of path to next unmarked ancestor)
 - Normalize unit time such that

 $t_{decr-key} \leq \text{length of path to next unmarked ancestor}$

Amortized Times

Assume operation i is of type:

• initialize-heap:

- actual time: $t_i \leq 1$, potential: $\Phi_{i-1} = \Phi_i = 0$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \leq 1$

• is-empty, get-min:

- actual time: $t_i \le 1$, potential: $\Phi_i = \Phi_{i-1}$ (heap doesn't change)
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

merge:

- Actual time: $t_i \leq 1$
- combined potential of both heaps: $\Phi_i = \Phi_{i-1}$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

Amortized Time of Insert

Assume that operation i is an *insert* operation:

- Actual time: $t_i \leq 1$
- Potential function:
 - M remains unchanged (no nodes are marked or unmarked, no marked nodes are moved to the root list)
 - R grows by 1 (one element is added to the root list)

$$M_i = M_{i-1}, \qquad R_i = R_{i-1} + 1$$

 $\Phi_i = \Phi_{i-1} + 1$

Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \le 2$$

Amortized Time of Delete-Min

Assume that operation i is a *delete-min* operation:

Actual time: $t_i \leq D(n) + |H.rootlist|$

Potential function $\Phi = R + 2M$:

- R: changes from H. rootlist to at most D(n)
- *M*: (# of marked nodes that are not in the root list)
 - no new marks
 - if node v is moved away from root list, v. mark is set to false
 → value of M does not increase!

$$M_i \le M_{i-1}$$
, $R_i \le R_{i-1} + D(n) - |H.rootlist|$
 $\Phi_i \le \Phi_{i-1} + D(n) - |H.rootlist|$

Amortized Time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \le 2D(n)$$

Amortized Time of Decrease-Key

Assume that operation i is a decrease-key operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

- Assume, node u and nodes u_1, \dots, u_k are moved to root list
 - $-u_1, ..., u_k$ are marked and moved to root list, v. mark is set to true
- $\geq k$ marked nodes go to root list, ≤ 1 node gets newly marked
- R grows by $\leq k+1$, M grows by 1 and is decreased by $\geq k$

$$R_i \le R_{i-1} + k + 1, \qquad M_i \le M_{i-1} + 1 - k$$

 $\Phi_i \le \Phi_{i-1} + (k+1) - 2(k-1) = \Phi_{i-1} + 3 - k$

Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \le k+1+3-k=4$$

Complexities Fibonacci Heap

• Initialize-Heap: O(1)

• Is-Empty: O(1)

• Insert: O(1)

• Get-Min: O(1)

• Delete-Min: O(D(n)) \longrightarrow amortized

• Decrease-Key: O(1)

• Merge (heaps of size m and $n, m \le n$): O(1)

• How large can D(n) get?

Rank of Children

Lemma:

Consider a node v of rank k and let u_1, \dots, u_k be the children of v in the order in which they were linked to v. Then,

$$rank(u_i) \geq i - 2$$
.

Proof:

Fibonacci Numbers:

$$F_0 = 0$$
, $F_1 = 1$, $\forall k \ge 2$: $F_k = F_{k-1} + F_{k-2}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Proof:

• S_k : minimum size of the sub-tree of a node of rank k

$$S_0 = 1$$
, $S_1 = 2$, $\forall k \ge 2 : S_k \ge 2 + \sum_{i=0}^{k-2} S_i$

Claim about Fibonacci numbers:

$$\forall k \ge 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$

$$S_0 = 1, S_1 = 2, \forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i, \qquad F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$

• Claim of lemma: $S_k \ge F_{k+2}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Theorem:

The maximum rank of a node in a Fibonacci heap of size n is at most

$$D(n) = O(\log n).$$

Proof:

The Fibonacci numbers grow exponentially:

$$F_k = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right)$$

• For $D(n) \ge k$, we need $n \ge F_{k+2}$ nodes.

Summary: Binomial and Fibonacci Heaps

	Binomial Heap	Fibonacci Heap
initialize	O (1)	O (1)
insert	$O(\log n)$	O (1)
get-min	O (1)	O (1)
delete-min	$O(\log n)$	$O(\log n)$ *
decrease-key	$O(\log n)$	O (1) *
merge	$O(\log n)$	O (1)
is-empty	0(1)	O (1)

^{*} amortized time

Minimum Spanning Trees

Prim Algorithm:

- 1. Start with any node v (v is the initial component)
- 2. In each step: Grow the current component by adding the minimum weight edge e connecting the current component with any other node

Kruskal Algorithm:

- 1. Start with an empty edge set
- 2. In each step: Add minimum weight edge e such that e does not close a cycle

Implementation of Prim Algorithm

Start at node s, very similar to Dijkstra's algorithm:

- 1. Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- 2. All nodes $s \geq v$ are unmarked

- 3. Get unmarked node u which minimizes d(u):
- 4. For all $e = \{u, v\} \in E$, $d(v) = \min\{d(v), w(e)\}$
- 5. mark node u

6. Until all nodes are marked

Implementation of Prim Algorithm

Implementation with Fibonacci heap:

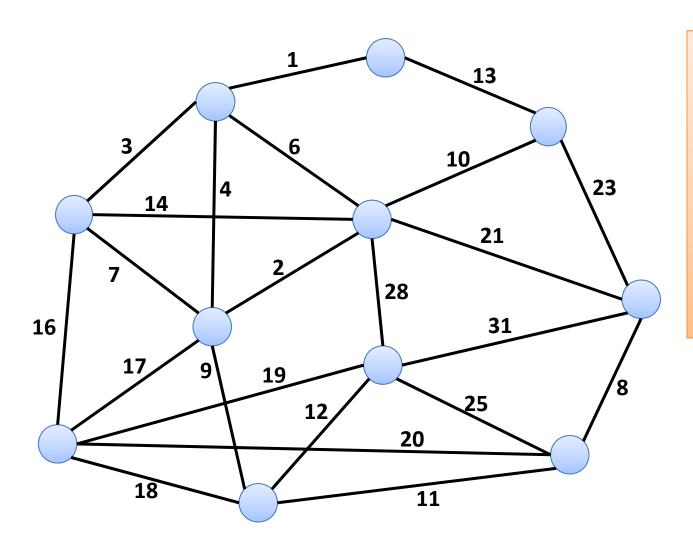
Analysis identical to the analysis of Dijkstra's algorithm:

O(n) insert and delete-min operations

O(m) decrease-key operations

• Running time: $O(m + n \log n)$

Kruskal Algorithm



- 1. Start with an empty edge set
- 2. In each step:
 Add minimum
 weight edge e
 such that e does
 not close a cycle

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

2. For each edge *e*:

if e does not close a cycle then

add e to the current solution

Union-Find Data Structure

Also known as **Disjoint-Set Data Structure**...

Manages partition of a set of elements

set of disjoint sets

Operations:

• make_set(x): create a new set that only contains element x

• find(x): return the set containing x

• union(x, y): merge the two sets containing x and y

Implementation of Kruskal Algorithm

1. Initialization:

For each node v: make_set(v)

- 2. Go through edges in order of increasing weights: Sort edges by edge weight
- 3. For each edge $e = \{u, v\}$:

```
if find(u) \neq find(v) then
```

add e to the current solution

union(u, v)

Managing Connected Components

- Union-find data structure can be used more generally to manage the connected components of a graph
 - ... if edges are added incrementally
- make_set(v) for every node v
- find(v) returns component containing v
- union(u, v) merges the components of u and v (when an edge is added between the components)
- Can also be used to manage biconnected components

Basic Implementation Properties

Representation of sets:

 Every set S of the partition is identified with a representative, by one of its members x ∈ S

Operations:

- $make_set(x)$: x is the representative of the new set $\{x\}$
- find(x): return representative of set S_x containing x
- union(x, y): unites the sets S_x and S_y containing x and y and returns the new representative of $S_x \cup S_y$

Observations

Throughout the discussion of union-find:

- *n*: total number of make_set operations
- *m*: total number of operations (make_set, find, and union)

Clearly:

- $m \ge n$
- There are at most n-1 union operations

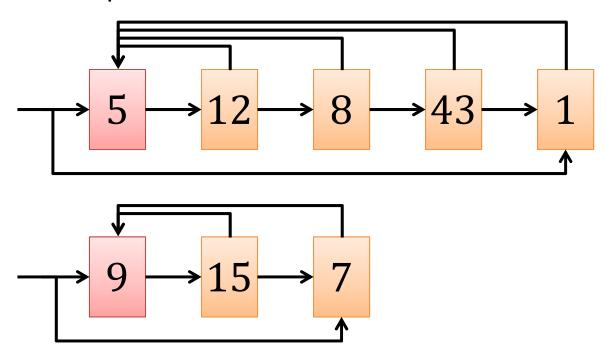
Remark:

- We assume that the n make_set operations are the first n operations
 - Does not really matter...

Linked List Implementation

Each set is implemented as a linked list:

representative: first list element (all nodes point to first elem.)
 in addition: pointer to first and last element



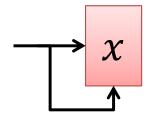
• sets: {1,5,8,12,43}, {7,9,15}; representatives: 5, 9

Linked List Implementation

$make_set(x)$:

Create list with one element:

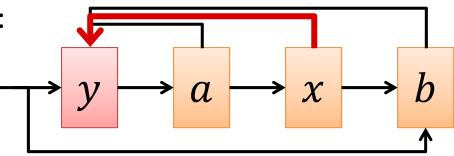
time: O(1)



find(x):

Return first list element:

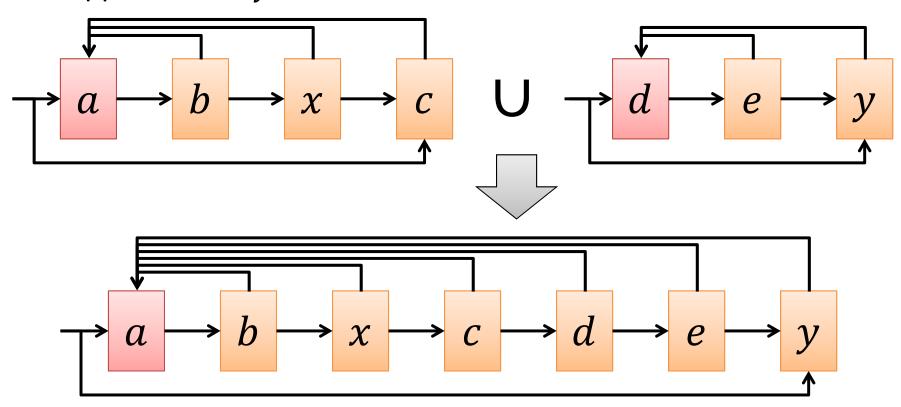
time: O(1)



Linked List Implementation

union(x, y):

• Append list of *y* to list of *x*:



Time: O(length of list of y)

Cost of Union (Linked List Implementation)

Total cost for n-1 union operations can be $\Theta(n^2)$:

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_{n-1}, x_n), union(x_{n-2}, x_{n-1}), ..., union(x_1, x_2)

Weighted-Union Heuristic

- In a bad execution, average cost per union can be $\Theta(n)$
- Problem: The longer list is always appended to the shorter one

Idea:

In each union operation, append shorter list to longer one!

Cost for union of sets S_x and S_y : $O(\min\{|S_x|, |S_y|\})$

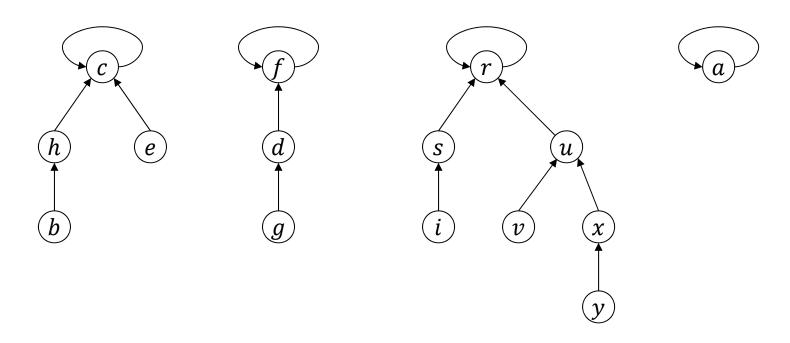
Theorem: The overall cost of m operations of which at most n are make_set operations is $O(m + n \log n)$.

Weighted-Union Heuristic

Theorem: The overall cost of m operations of which at most n are make_set operations is $O(m + n \log n)$.

Proof:

Disjoint-Set Forests

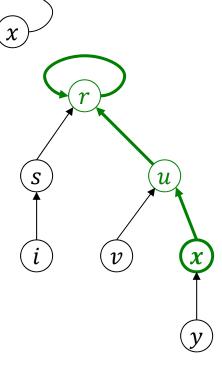


- Represent each set by a tree
- Representative of a set is the root of the tree

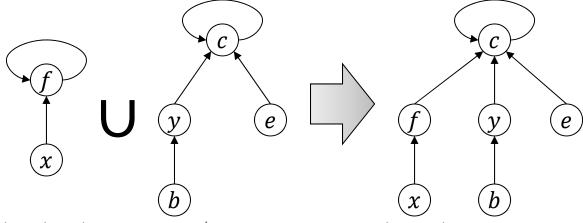
Disjoint-Set Forests

make_set(x): create new one-node tree

find(x): follow parent point to root
 (parent pointer to itself)



union(x, y): attach tree of x to tree of y



Algorithm Theory, WS 2013/14

Fabian Kuhn

Bad Sequence

Bad sequence leads to tree(s) of depth $\Theta(n)$

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_1, x_2), union(x_1, x_3), ..., union(x_1, x_n)

Union-By-Size Heuristic

Union of sets S_1 and S_2 :

- Root of trees representing S_1 and S_2 : r_1 and r_2
- W.I.o.g., assume that $|S_1| \ge |S_2|$
- Root of $S_1 \cup S_2$: r_1 (r_2 is attached to r_1 as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case cost of a find-operation is $O(\log n)$

Proof:

Similar Strategy: union-by-rank

rank: essentially the depth of a tree

Union-Find Algorithms

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

• make_set: worst-case cost O(1)

• find : worst-case cost O(1)

• union : amortized worst-case cost $O(\log n)$

Disjoint-Set Forest with Union-By-Size Heuristic:

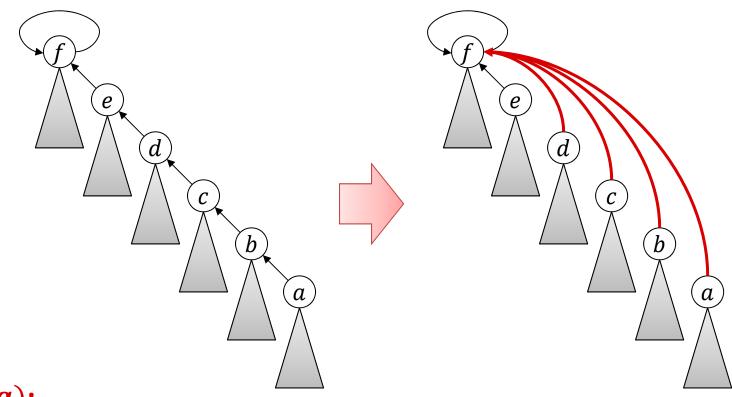
• make_set: worst-case cost O(1)

• find : worst-case cost $O(\log n)$

• union : worst-case cost $O(\log n)$

Can we make this faster?

Path Compression During Find Operation



find(a):

- 1. if $a \neq a$. parent then
- 2. a.parent = find(a.parent)
- 3. **return** *a.parent*

Complexity With Path Compression

When using only path compression (without union-by-rank):

m: total number of operations

- *f* of which are find-operations
- n of which are make_set-operations
 - \rightarrow at most n-1 are union-operations

Total cost:
$$O\left(n + f \cdot \left[\log_{2+f/n} n\right]\right) = O\left(m + f \cdot \log_{2+m/n} n\right)$$

Union-By-Size and Path Compression

Theorem:

Using the combined union-by-rank and path compression heuristic, the running time of m disjoint-set (union-find) operations on n elements (at most n make_set-operations) is

$$\Theta(m \cdot \alpha(m,n)),$$

Where $\alpha(m, n)$ is the inverse of the Ackermann function.

Ackermann Function and its Inverse

Ackermann Function:

$$\text{For } k, \ell \geq 1, \\ A(k,\ell) \coloneqq \begin{cases} 2^{\ell}, & \text{if } k = 1, \ell \geq 1 \\ A(k-1,2), & \text{if } k > 1, \ell = 1 \\ A(k-1,A(k,\ell-1)), & \text{if } k > 1, \ell > 1 \end{cases}$$

Inverse of Ackermann Function:

$$\alpha(m,n) := \min\{k \geq 1 \mid A(k,\lfloor m/n \rfloor) > \log_2 n\}$$

Inverse of Ackermann Function

- $\alpha(m,n) := \min\{k \ge 1 \mid A(k,\lfloor^m/n\rfloor) > \log_2 n\}$ $m \ge n \Rightarrow A(k,\lfloor^m/n\rfloor) \ge A(k,1) \Rightarrow \alpha(m,n) \le \min\{k \ge 1 \mid A(k,1) > \log n\}$
- $A(1,\ell) = 2^{\ell}$, A(k,1) = A(k-1,2), $A(k,\ell) = A(k-1,A(k,\ell-1))$