)

Chapter 6
Randomization

Algorithm Theory
WS 2013/14

Fabian Kuhn

UNI
!

FREIBURG

Randomization

UNI
I

FREIBURG

Randomized Algorithm:

 An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
 Make algorithms faster

e Make algorithms simpler

 Make the analysis simpler

— Sometimes it’s also the opposite...
e Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization
— True in some computational models (e.g., for distributed algorithms)
— Not clear in the standard sequential model

Algorithm Theory, WS 2013/14 Fabian Kuhn 2

Contention Resolution

UNI

FREIBURG

A simple starter example (from distributed computing)
e Allows to introduce important concepts
e ...and to repeat some basic probability theory

Setting:
e n processes, 1 resource
(e.g., shared database, communication channel, ...)
e There are time slots 1,2,3, ...
* |n each time slot, only one client can access the resource
e All clients need to regularly access the resource

e |fclienti tries to access the resource in slot t:
— Successful iff no other client tries to access the resource in slot t

Algorithm Theory, WS 2013/14 Fabian Kuhn 3

UNI

Algorithm

Algorithm Ideas:
e Accessing the resource deterministically seems hard

— need to make sure that processes access the resource at different times
— or at least: often only a single process tries to access the resource

 Randomized solution:
In each time slot, each process tries with probability p.

Analysis:

 How large should p be?

e How long does it take until some process i succeeds?
 How long does it take until all processes succeed?

e What are the probabilistic guarantees?

Algorithm Theory, WS 2013/14 Fabian Kuhn 4

FREIBURG

Analysis

UNI

FREIBURG

Events:

* A;: process i tries to access the resource in time slot ¢

— Complementary event: A; ;

P(qu,t) =D P(qu,t) =1-p

* §;::processiissuccessful in time slot ¢

Sit = Ajr N ﬂ Aj t

J#I

e Success probability (for process i):

Algorithm Theory, WS 2013/14 Fabian Kuhn

FiIXing p

UNI
FREIBURG

e P(S;;) =p(1—p)*1is maximized for

1 1 1\" 1
pZE — P(Si,t)zg 1—£ .

 Asymptotics:

Forn = 2:

gnA

1\" 1 1\t 1
1——) <=-<|(1-= < -
n e n 2

e Success probability:

1 1
5 <]P)(’Slt) < _Tl

Algorithm Theory, WS 2013/14 Fabian Kuhn

Time Until First Success

UNI
FREIBURG

Random Variable T;:
e T; =tifproc.iissuccessfulinslott for the first time

e Distribution:

e T;isgeometrically distributed with parameter

1 1\"" ' 1
CI:P(‘Si,t)ZE 1—5 >a.

* Expected time until first success:

1
E|T;] = E <en

Algorithm Theory, WS 2013/14 Fabian Kuhn 7

Time Until First Success

|
FRE:BURG

UNI

Failure Event F; ;: Process i does not succeed in timeslots 1, ..., t

* The events §; ; are independent for different ¢:

P(F;) = P ﬁﬂ 1_[P(S;) = (1- P(gl,,))t

« We know that P(S;,) > Yen:

1 t
P(F;,) < (1 - —) < e /en

en

Algorithm Theory, WS 2013/14 Fabian Kuhn 8

Time Until First Success

|
FRE:BURG

UNI

No success by time t: P(?i’t) < g~ en

t = [en]: P(F;;) < Ye

e Generallyif t = ©(n): constant success probability

t=>en-c-lnn: P(Ti,t) < 1/ec-1nn =1/ c
* For success probability 1 — 1/ ., we need t = O(nlogn).

* We say that i succeeds with high probability in O(nlogn) time.

Algorithm Theory, WS 2013/14 Fabian Kuhn 9

Time Until All Processes Succeed

Event F;: some process has not succeeded by time t

n
Tt=UTi,t
=1

Union Bound: For events &4, ..., &,

k

k
P U g | < 2 P(E,)
i i
Probability that not all processes have succeeded by time t:

P(F,) =P (U ?i,t> < z P(F;,) <n-e/en.
=1 =1

Algorithm Theory, WS 2013/14 Fabian Kuhn

UNI
I

FREIBURG

Time Until All Processes Succeed

UNI
FREIBURG

Claim: With high probability, all processes succeed in the first
O(nlogn) time slots.

Proof:
e« P(F,) <n-et/en
e Sett=[en:(c+1)Inn]

Remark: O@(nlogn) time slots are necessary for all processes to
succeed with reasonable probability

Algorithm Theory, WS 2013/14 Fabian Kuhn 11

Primality Testing

UNI

Problem: Given a natural numbern = 2, is n a prime number?

Simple primality test:
1. ifniseven then

2 return (n = 2)

3. fori:=1to|yn/2|do
4, if 2 + 1 divides n then
5 return false

6. return true

e Running time: 0(1/n)

Algorithm Theory, WS 2013/14 Fabian Kuhn

12

FREIBURG

A Better Algorithm?

UNI
I

FREIBURG

 How can we test primality efficiently?
e We need a little bit of basic number theory...

Square Roots of Unity: In Z;,, where p is a prime, the only
solutions of the equation x? = 1 (mod p) are x = +1 (mod p)

e Ifwefindanx £ +1 (mod n) such that x? = 1 (mod n), we
can conclude that n is not a prime.

Algorithm Theory, WS 2013/14 Fabian Kuhn 13

Algorithm Idea

UNI
FREIBURG

Claim: Let p > 2 be a prime number such that p — 1 = 2°d for an
integer s = 1 and some odd integer d = 3. Then for all a € Z,,

a? =1 (modp) or a? 4 = —1 (modp) forsome 0 < r < s.

Proof:
 Fermat’s Little Theorem: Given a prime number p,
Va € Zy: aP~!' =1 (modp)

Algorithm Theory, WS 2013/14 Fabian Kuhn 14

Primality Test

UNI

&
L&
&
[
1

We have: If n is an odd prime and n — 1 = 2°d for an integer s >
and an odd integer d = 3. Then foralla € {1, ...,n — 1},

a® =1 (modn) or a2 % = —1 (modn) forsome0 <r < s.

Idea: If we find ana € {1, ...,n — 1} such that

a? =1 (modn) and a? 4 = —1 (modn) forall0 <r < s,
we can conclude that n is not a prime.

* For every odd composite n > 2, at least 3/, of all possible a
satisfy the above condition

e How can we find such a witness a efficiently?

Algorithm Theory, WS 2013/14 Fabian Kuhn 15

Miller-Rabin Primality Test

UNI

FREIBURG

e G@Given a natural numbern = 2, isn a prime number?

Miller-Rabin Test:

if n is even then return (n = 2)

compute s, d such thatn — 1 = 2°d;

choose a € {2, ...,n — 2} uniformly at random;
x = a% mod n;

if x =1 orx =n — 1 then return true;
forr:=1tos—1do

x = x° mod n;

if x = 1 then return true;

0 0 N O Uk W E

return false;

Algorithm Theory, WS 2013/14 Fabian Kuhn

16

Analysis

UNI

FREIBURG

Theorem:
 Ifnis prime, the Miller-Rabin test always returns true.

 If nis composite, the Miller-Rabin test returns false with
probability at least 3/,.

Proof:
 Ifnis prime, the test works for all values of a
 |fnis composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to
detect a composite number n with probability at most 47%.

Algorithm Theory, WS 2013/14 Fabian Kuhn

UNI
FREIBURG

Running Time

Cost of Modular Arithmetic:
e Representation of a number x € Z,,;: O(logn) bits

e Cost of adding two numbers x + y mod n:

e Cost of multiplying two numbers x - y mod n:

— It’s like multiplying degree O (logn) polynomials
—> use FFT tocomputez = x - y

Algorithm Theory, WS 2013/14 Fabian Kuhn 18

Running Time

UNI

FREIBURG

Cost of exponentiation x¢

mod n:

e Can be done using O(log d) multiplications

* Base-2representationofd: d =) _ logd d; 2!

* Fast exponentiation:
1. y:=1;

2. fori:=|logd|to0do

3 y = y% mod n;

4, ifd; =1theny =y -xmodn;
5. returny;

e Example:d =22 =10110,

Algorithm Theory, WS 2013/14

Fabian Kuhn

19

Running Time

RE:BURG

T2
= T

Theorem: One iteration of the Miller-Rabin test can be implemented
with running time 0(log? n - loglogn - logloglogn).

if n is even then return (n = 2)

compute s, d such thatn — 1 = 2°d;

choose a € {2, ...,n — 2} uniformly at random;
x = a% mod n;

if x =1 orx =n — 1 then return true;
forr:=1tos—1do

x = x° mod n;

if x = 1 then return true;

0 0 N Uk WwWwN R

return false;

Algorithm Theory, WS 2013/14 Fabian Kuhn 20

Deterministic Primality Test

o5&

e If a conjecture called the generalized Riemann hypothesis (GRH)
is true, the Miller-Rabin test can be turned into a polynomial-
time, deterministic algorithm

- Itis then sufficient to try all a € {1, ..., 0(log? n)}

e It has long not been proven whether a deterministic,
polynomial-time algorithm exist

* In 2002, Agrawal, Kayal, and Saxena gave an O (log!? n)-time
deterministic algorithm

— Has been improved to 0 (log® n)

e |n practice, the randomized Miller-Rabin test is still the fastest
algorithm

Algorithm Theory, WS 2013/14 Fabian Kuhn 21

Randomized Quicksort

UNI
I

FREIBURG

Quicksort:

Sp<v % S, >v

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn S
else { choose pivot element v in S;
partition S into S, with elements < v,
and S, with elements > v
return | Quick(S,) |v |Quick(S;)

end;

Algorithm Theory, WS 2013/14 Fabian Kuhn

22

Randomized Quicksort Analysis

UNI
I

FREIBURG

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:
e Let’s just count the number of comparisons

* |n the partitioning step, all n — 1 non-pivot elements have to be
compared to the pivot

e Number of comparisons:

n —1 + #comparisons in recursive calls

e If rank of pivotis r:
recursive calls withr — 1 and n — r elements

Algorithm Theory, WS 2013/14 Fabian Kuhn 23

Randomized Quicksort Analysis

Random variables:
e (:total number of comparisons (for a given array of length n)

e R:rank of first pivot
Cp, C,.: number of comparisons for the 2 recursive calls

E[C] = n— 1+ E[C,] + E[C,]
Law of Total Expectation:

E[C] = z P(R =) - E[C|R = 1]
r=1

n

P(R=r)-(n—1+E[C,|R=7]+E[C.|R =T7])

r=1

Algorithm Theory, WS 2013/14 Fabian Kuhn 24

UNI
FREIBURG

UNI

Randomized Quicksort Analysis

FREIBURG

We have seen that:

n
E[C] = z P(R=7)-(n—1+E[C,|R = 7] + E[C.|R = r])
r=1
Define:
e T(n): expected number of comparisons when sorting n elements
E[C] =T(n)

E[C/\R=7]=T(r —1)
E[C/IR=1r]=T(n—r)

Recursion:
n

1
T(n) =;H-(n—1+T(r—1)+T(n—r))
T0O)=T(1)=0

Algorithm Theory, WS 2013/14 Fabian Kuhn 25

Randomized Quicksort Analysis

UNI
I

FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n

T(n)=2%-(n—1+T(r—1)+T(n—r)), T(0) =0

r=1

Algorithm Theory, WS 2013/14 Fabian Kuhn 26

Randomized Quicksort Analysis

|
FRE:BURG

UNI

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:

4 n
T(n)Sn—1+—-jxlnxdx
n 1 \
— _x*lnx x?
fxnx X = 5 —4

Algorithm Theory, WS 2013/14 Fabian Kuhn 27

IBURG

Alternative Analysis

Arraytosort:[7,3,1,10,14,8,12,9,4,6,5,15,2,13,11]

Viewing quicksort run as a tree:

Algorithm Theory, WS 2013/14 Fabian Kuhn 28

Comparisons

UNI

e Comparisons are only between pivot and non-pivot elements

 Every element can only be the pivot once:
— every 2 elements can only be compared once!

W.l.0.g., assume that the elements to sortare 1,2, ..., n

Elements i and j are compared if and only if eitheri orjis a
pivot before any element h:i < h < j is chosen as pivot
— i.e., iff i is an ancestor of j or j is an ancestor of i

[P(comparison betw.i and j) =j 11

Algorithm Theory, WS 2013/14 Fabian Kuhn

29

FREIBURG

Counting Comparisons

UNI
I

FREIBURG

Random variable for every pair of elements (i, j):

1,

if there is a comparison between i and j
otherwise

Number of comparisons: X

e Whatis E[X]?

Algorithm Theory, WS 2013/14

1<j

Fabian Kuhn

30

Randomized Quicksort Analysis

UNI
FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.
Proof:

e Linearity of expectation:
For all random variables X4, ..., X,; and all a4, ..., a,, € R,

E [Zn: a; X;| = Zn: a; E[X;].

Algorithm Theory, WS 2013/14 Fabian Kuhn 31

Randomized Quicksort Analysis

|
FRE:BURG

UNI

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n—-1n-— l+1

=2 Yy) b

i=1 j=i+1

Algorithm Theory, WS 2013/14 Fabian Kuhn 32

Types of Randomized Algorithms

UNI
FREIBURG

Las Vegas Algorithm:

e always a correct solution

* running time is a random variable

 Example: randomized quicksort, contention resolution
Monte Carlo Algorithm:

e probabilistic correctness guarantee (mostly correct)

e fixed (deterministic) running time

e Example: primality test

Algorithm Theory, WS 2013/14 Fabian Kuhn 33

Minimum Cut

UNI

FREIBURG

Reminder: Given a graph G = (V, E), a cut is a partition (4, B)
of VsuchthatV = AUB,ANB=Q0,A,B+0

Size of the cut (4, B): # of edges crossing the cut
 For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size 1(G))

Maximum-flow based algorithm:
e Fix s, compute min s-t-cut forallt # s

. O(m : A(G)) = 0(mn) per s-t cut
e Gives an O(mn/l(G)) = 0(mn?)-algorithm

Best-known deterministic algorithm: O (mn + nlogn)

Algorithm Theory, WS 2013/14 Fabian Kuhn

34

Edge Contractions

UNI
FREIBURG

* Inthe following, we consider multi-graphs that can have
multiple edges (but no self-loops)

ok not ok

Contracting edge {u, v}:

e Replace nodes u, v by new node w
e Forall edges {u,x}and {v, x}, add an edge {w, x}
e Remove self-loops created at node w

contract {u, v}

Algorithm Theory, WS 2013/14 Fabian Kuhn 35

UNI
I

FREIBURG

Properties of Edge Contractions

Nodes:
e After contracting {u, v}, the new node represents u and v

e After a series of contractions, each node represents a subset of
the original nodes

2 (1,2) (1,2)
3 (5(4,6)} 5 {3.(4,5,6)}
— —
. (3,4,5,6)
6 (4,5, 6)
Cuts:

e Assume in the contracted graph, w represents nodes S,, C V

e The edges of a node w in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut (S,,,V \ S,,)

Algorithm Theory, WS 2013/14 Fabian Kuhn 36

UNI

Randomized Contraction Algorithm

FREIBURG

Algorithm:

while there are > 2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0 (n?).

e We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 0(n?).
e There are n — 2 contractions, each can be done in time 0(n).

* You will show this in the exercises.
Algorithm Theory, WS 2013/14 Fabian Kuhn 37

Contractions and Cuts

UNI
FREIBURG

Lemma: If two original nodes u, v € V are merged into the same
node of the contracted graph, there is a path connecting u and v
in the original graph s.t. all edges on the path are contracted.

Proof:

e Contracting an edge {x, y} merges the node sets represented by
x and y and does not change any of the other node sets.

e The claim the follows by induction on the number of edge
contractions.

Algorithm Theory, WS 2013/14 Fabian Kuhn 38

Contractions and Cuts

UNI
I

FREIBURG

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

e All cutsin a (partially) contracted graph correspond to cuts of
the same size in the original graph G as follows:

— For a node u of the contracted graph, let S,, be the set of original nodes
that have been merged into u (the nodes that u represents)

— Consider a cut (4, B) of the contracted graph
— (A’,B") with

A= US”’ B := US,,

UEA VEB
is a cut of G.

— The edges crossing cut (4, B) are in one-to-one correspondence with the
edges crossing cut (4, B).

Algorithm Theory, WS 2013/14 Fabian Kuhn 39

Contraction and Cuts

UNI
I

FREIBURG

Lemma: The contraction algorithm outputs a cut (4, B) of the input
graph G if and only if it never contracts an edge crossing (4, B).

Proof:

1. If an edge crossing (A4, B) is contracted, a pair of nodes u € 4,
v € V is merged into the same node and the algorithm outputs
a cut different from (4, B).

2. Ifnoedge of (4, B) is contracted, notwonodesu € A, v € B
end up in the same contracted node because every path
connecting u and v in G contains some edge crossing (4, B)

In the end there are only 2 sets = outputis (4, B)

Algorithm Theory, WS 2013/14 Fabian Kuhn 40

Getting The Min Cut

|
FRE:BURG

UNI

Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k,
G: has at least kn/2 edges.

Proof:

e Min cut has size k = all nodes have degree > k
— A node v of degree < k gives a cut ({v},V \ {v}) of size < k

 Number of edgesm =1/, -3 deg(v)

Algorithm Theory, WS 2013/14 Fabian Kuhn 41

Getting The Min Cut

UNI
I

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

Proof:
e Consider a fixed min cut (4, B), assume (4, B) has size k

e The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

e Before contraction i, therearen + 1 — i nodes
2> andthus> (n+ 1 —i)k/2 edges

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i is at most

ko2
nm+1—-Dk n+1-i
2

Algorithm Theory, WS 2013/14 Fabian Kuhn 42

Getting The Min Cut

|
FRE:BURG

UNI

Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

Proof:

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i isat most 2/, ;_;.

e Event &;: edge contracted in step i is not crossing (A4, B)

Algorithm Theory, WS 2013/14 Fabian Kuhn 43

Getting The Min Cut

UNI
I

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

Proof:
* P(Eal&n-NE) =2/
* No edge crossing (4, B) contracted: event £ = N7 E;

Algorithm Theory, WS 2013/14 Fabian Kuhn 44

Randomized Min Cut Algorithm

UNI
FREIBURG

Theorem: If the contraction algorithm is repeated 0 (n?logn)
times, one of the O(n? logn) instances returns a min. cut w.h.p.

Proof:

e Probability to not get a minimum cutin c - (2) - In n iterations:

1 \¢()mn emn 1
(1 — T) <e = F
(2)

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

 Each instance can be implemented in O(n?) time.
(O(n) time per contraction)

Algorithm Theory, WS 2013/14 Fabian Kuhn 45

Can We Do Better?

UNI
FREIBURG

e Time O(n*logn) is not very spectacular, a simple max flow
based implementation has time 0 (n*).

However, we will see that the contraction algorithm is
nevertheless very interesting because:

1. The algorithm can be improved to beat every known
deterministic algorithm.

1. It allows to obtain strong statements about the distribution
of cuts in graphs.

Algorithm Theory, WS 2013/14 Fabian Kuhn 46

Better Randomized Algorithm

|
FRE:BURG

UNI

Recall:

Consider a fixed min cut (4, B), assume (4, B) has size k

The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

Throughout the algorithm, the edge connectivity is at least k
and therefore each node has degree = k

Before contraction i, there aren + 1 — i nodes and thus at
least (n + 1 — i)k /2 edges

If no edge crossing (A4, B) is contracted before, the probability
to contract an edge crossing (A, B) in step i is at most

ko2
m+1—-Dk n+1-i
2

Algorithm Theory, WS 2013/14 Fabian Kuhn 47

Improving the Contraction Algorithm

UNI

FREIBURG

e For a specific min cut (4, B), if (4, B) survives the first i
contractions,

[P(edge crossing (4, B) in contractioni + 1) <

n—i
 Observation: The probability only gets large for large i

e ldea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early

ones.

Algorithm Theory, WS 2013/14 Fabian Kuhn

48

Safe Contraction Phase

|
FRE:BURG

UNI

Lemma: A given min cut (4, B) of an n-node graph G survives the
firstn — ["/\/E + 1\ contractions, with probability > 1/,.

Proof:
e Event &;: cut (4, B) survives contraction i
e Probability that (4, B) survives the first n — t contractions:

Algorithm Theory, WS 2013/14 Fabian Kuhn 49

Better Randomized Algorithm

UNI
FREIBURG

Let’s simplify a bit:

e Pretend that n/\/f is an integer (for all n we will need it).

e Assume that a given min cut survives the first n — "/\/E
contractions with probability > 1/,.

contract(a, t):

e Starting with n-node graph G, perform n — t edge contractions
such that the new graph has t nodes.

mincut(G):
1. X, := mincut (contract(G,n/ﬁ));

2. X, := mincut (contract(G,n/\/E));

3. return min{X{,X,};
Algorithm Theory, WS 2013/14 Fabian Kuhn 50

Success Probability

UNI
FREIBURG

mincut(G):

1. X;:= mincut (contract(G,n/\/f));

2. X, = mincut (contract(G,n/\/E));

3. return min{X,, X,};

P(n): probability that the above algorithm returns a min cut when
applied to a graph with n nodes.

* Probability that X; is a min cut =

Recursion:

Algorithm Theory, WS 2013/14 Fabian Kuhn 51

Success Probability

|
FRE:BURG

UNI

Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least 1/log, n.

Proof (by induction on n):

n 1 n\’

Algorithm Theory, WS 2013/14 Fabian Kuhn 52

Running Time

UNI
I

FREIBURG

1. X; := mincut (contract(G,n/\/f));

2. X, = mincut (contract(G,n/ﬁ));

3. return min{X,, X,};

Recursion:

e T(n):time to apply algorithm to n-node graphs

e Recursive calls: 2T ("/ﬁ)

* Number of contractions to get to "/ﬁ nodes: O(n)

T(n) = 2T<

Algorithm Theory, WS 2013/14

n

V2

) +0m?), TQ)=0(1)

Fabian Kuhn

53

UNI

Running Time

FREIBURG

Theorem: The running time of the recursive, randomized min cut
algorithm is 0 (n®logn).

Proof:
e Can be shown in the usual way, by induction onn

Remark:

e The running time is only by an O (log n)-factor slower than
the basic contraction algorithm.

 The success probability is exponentially better!

Algorithm Theory, WS 2013/14 Fabian Kuhn 54

Number of Minimum Cuts

UNI
FREIBURG

e Given a graph G, how many minimum cuts can there be?

e Or alternatively: If G has edge connectivity k, how many ways
are there to remove k edges to disconnect G?

* Note that the total number of cuts is large.

Algorithm Theory, WS 2013/14 Fabian Kuhn 55

Number of Minimum Cuts

UNI

FREIBURG

Example: Ring with n nodes

Algorithm Theory, WS 2013/14

Fabian Kuhn

Minimum cut size: 2

Every two edges
induce a min cut

Number of edge pairs:
(2)
2
Are there graphs with
more min cuts?

56

Number of Min Cuts

|
FRE:BURG

UNI

n
Theorem: The number of minimum cuts of a graph is at most (2)

Proof:

e Assume there are s min cuts

e Fori€{l,..,s}, define event C;:

C; := {basic contraction algorithm returns min cut i}
 We know thatfori € {1, ...,s}: P(C;) = 1/(;)
e Events Cy, ..., C are disjoint:
S S
S
P (U Cl> — z P(Cl) — TN
SRS (2)

=

Algorithm Theory, WS 2013/14 Fabian Kuhn 57

