

Chapter 6 Randomization

Algorithm Theory WS 2013/14

Fabian Kuhn

Randomization

Randomized Algorithm:

 An algorithm that uses (or can use) random coin flips in order to make decisions

We will see: randomization can be a powerful tool to

- Make algorithms faster
- Make algorithms simpler
- Make the analysis simpler
 - Sometimes it's also the opposite...
- Allow to solve problems (efficiently) that cannot be solved (efficiently) without randomization
 - True in some computational models (e.g., for distributed algorithms)
 - Not clear in the standard sequential model

Contention Resolution

A simple starter example (from distributed computing)

- Allows to introduce important concepts
- ... and to repeat some basic probability theory

Setting:

- *n* processes, 1 resource (e.g., shared database, communication channel, ...)
- There are time slots 1,2,3, ...
- In each time slot, only one client can access the resource
- All clients need to regularly access the resource
- If client *i* tries to access the resource in slot *t*:
 - Successful iff no other client tries to access the resource in slot t

Algorithm

Algorithm Ideas:

- Accessing the resource deterministically seems hard
 - need to make sure that processes access the resource at different times
 - or at least: often only a single process tries to access the resource
- Randomized solution:

In each time slot, each process tries with probability p.

Analysis:

- How large should p be?
- How long does it take until some process i succeeds?
- How long does it take until all processes succeed?
- What are the probabilistic guarantees?

Analysis

Events:

- $\mathcal{A}_{i,t}$: process i tries to access the resource in time slot t
 - Complementary event: $\overline{\mathcal{A}_{i,t}}$

$$\mathbb{P}(\mathcal{A}_{i,t}) = p, \qquad \mathbb{P}(\overline{\mathcal{A}_{i,t}}) = 1 - p$$

• $S_{i,t}$: process i is successful in time slot t

$$S_{i,t} = \mathcal{A}_{i,t} \cap \left(\bigcap_{j \neq i} \overline{\mathcal{A}_{j,t}}\right)$$

Success probability (for process i):

Fixing p

• $\mathbb{P}(S_{i,t}) = p(1-p)^{n-1}$ is maximized for

$$p = \frac{1}{n}$$
 \Longrightarrow $\mathbb{P}(S_{i,t}) = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1}$.

Asymptotics:

For
$$n \ge 2$$
: $\frac{1}{4} \le \left(1 - \frac{1}{n}\right)^n < \frac{1}{e} < \left(1 - \frac{1}{n}\right)^{n-1} \le \frac{1}{2}$

Success probability:

$$\frac{1}{en} < \mathbb{P}(\mathcal{S}_{i,t}) \leq \frac{1}{2n}$$

Time Until First Success

Random Variable T_i :

- $T_i = t$ if proc. i is successful in slot t for the first time
- Distribution:

• T_i is geometrically distributed with parameter

$$q = \mathbb{P}(S_{i,t}) = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} > \frac{1}{en}.$$

Expected time until first success:

$$\mathbb{E}[T_i] = \frac{1}{q} < en$$

Time Until First Success

Failure Event $\mathcal{F}_{i,t}$: Process i does not succeed in time slots $1, \dots, t$

• The events $S_{i,t}$ are independent for different t:

$$\mathbb{P}(\mathcal{F}_{i,t}) = \mathbb{P}\left(\bigcap_{r=1}^{t} \overline{\mathcal{S}_{i,r}}\right) = \prod_{r=1}^{t} \mathbb{P}(\overline{\mathcal{S}_{i,r}}) = \left(1 - \mathbb{P}(\mathcal{S}_{i,r})\right)^{t}$$

• We know that $\mathbb{P}(S_{i,r}) > 1/en$:

$$\mathbb{P}(\mathcal{F}_{i,t}) < \left(1 - \frac{1}{en}\right)^t < e^{-t/en}$$

Time Until First Success

No success by time $t: \mathbb{P}(\mathcal{F}_{i,t}) < e^{-t/en}$

$$t = [en]: \mathbb{P}(\mathcal{F}_{i,t}) < 1/e$$

• Generally if $t = \Theta(n)$: constant success probability

$$t \ge en \cdot c \cdot \ln n$$
: $\mathbb{P}(\mathcal{F}_{i,t}) < \frac{1}{e^{c \cdot \ln n}} = \frac{1}{n^c}$

- For success probability $1 \frac{1}{n^c}$, we need $t = \Theta(n \log n)$.
- We say that i succeeds with high probability in $O(n \log n)$ time.

Time Until All Processes Succeed

Event \mathcal{F}_t : some process has not succeeded by time t

$$\mathcal{F}_t = \bigcup_{i=1}^n \mathcal{F}_{i,t}$$

Union Bound: For events $\mathcal{E}_1, \dots, \mathcal{E}_k$,

$$\mathbb{P}\left(\bigcup_{i}^{k} \mathcal{E}_{i}\right) \leq \sum_{i}^{k} \mathbb{P}(\mathcal{E}_{i})$$

Probability that not all processes have succeeded by time t:

$$\mathbb{P}(\mathcal{F}_t) = \mathbb{P}\left(\bigcup_{i=1}^n \mathcal{F}_{i,t}\right) \leq \sum_{i=1}^n \mathbb{P}(\mathcal{F}_{i,t}) < n \cdot e^{-t/en}.$$

Time Until All Processes Succeed

Claim: With high probability, all processes succeed in the first $O(n \log n)$ time slots.

Proof:

- $\mathbb{P}(\mathcal{F}_t) < n \cdot e^{-t/en}$
- Set $t = [en \cdot (c+1) \ln n]$

Remark: $\Theta(n \log n)$ time slots are necessary for all processes to succeed with reasonable probability

Primality Testing

Problem: Given a natural number $n \ge 2$, is n a prime number?

Simple primality test:

- 1. **if** n is even **then**
- 2. return (n = 2)
- 3. for i := 1 to $|\sqrt{n}/2|$ do
- 4. **if** 2i + 1 divides n **then**
- 5. **return false**
- 6. return true
- Running time: $O(\sqrt{n})$

A Better Algorithm?

- How can we test primality efficiently?
- We need a little bit of basic number theory...

Square Roots of Unity: In \mathbb{Z}_p^* , where p is a prime, the only solutions of the equation $x^2 \equiv 1 \pmod{p}$ are $x \equiv \pm 1 \pmod{p}$

• If we find an $x \not\equiv \pm 1 \pmod{n}$ such that $x^2 \equiv 1 \pmod{n}$, we can conclude that n is not a prime.

Algorithm Idea

Claim: Let p>2 be a prime number such that $p-1=2^sd$ for an integer $s\geq 1$ and some odd integer $d\geq 3$. Then for all $a\in\mathbb{Z}_p^*$,

$$a^d \equiv 1 \pmod{p}$$
 or $a^{2^r d} \equiv -1 \pmod{p}$ for some $0 \le r < s$.

Proof:

• Fermat's Little Theorem: Given a prime number p,

$$\forall a \in \mathbb{Z}_p^* \colon \quad a^{p-1} \equiv 1 \pmod{p}$$

Primality Test

We have: If n is an odd prime and $n-1=2^sd$ for an integer $s\geq 1$ and an odd integer $d\geq 3$. Then for all $a\in\{1,\ldots,n-1\}$,

 $a^d \equiv 1 \pmod{n}$ or $a^{2^r d} \equiv -1 \pmod{n}$ for some $0 \le r < s$.

Idea: If we find an $a \in \{1, ..., n-1\}$ such that $a^d \not\equiv 1 \pmod{n}$ and $a^{2^r d} \not\equiv -1 \pmod{n}$ for all $0 \le r < s$, we can conclude that n is not a prime.

- For every odd composite n>2, at least $^3/_4$ of all possible a satisfy the above condition
- How can we find such a witness a efficiently?

Miller-Rabin Primality Test

• Given a natural number $n \ge 2$, is n a prime number?

Miller-Rabin Test:

- 1. **if** n is even **then return** (n = 2)
- 2. compute s, d such that $n 1 = 2^s d$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x = a^d \mod n$;
- 5. if x = 1 or x = n 1 then return true;
- 6. for r := 1 to s 1 do
- 7. $x \coloneqq x^2 \mod n$;
- 8. if x = 1 then return true;
- 9. **return false**;

Analysis

Theorem:

- If *n* is prime, the Miller-Rabin test always returns **true**.
- If n is composite, the Miller-Rabin test returns **false** with probability at least $\frac{3}{4}$.

Proof:

- If n is prime, the test works for all values of a
- If n is composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to detect a composite number n with probability at most 4^{-k} .

Running Time

Cost of Modular Arithmetic:

- Representation of a number $x \in \mathbb{Z}_n$: $O(\log n)$ bits
- Cost of adding two numbers $x + y \mod n$:

- Cost of multiplying two numbers $x \cdot y \mod n$:
 - It's like multiplying degree $O(\log n)$ polynomials \rightarrow use FFT to compute $z = x \cdot y$

Running Time

Cost of exponentiation $x^d \mod n$:

- Can be done using $O(\log d)$ multiplications
- Base-2 representation of d: $d = \sum_{i=0}^{\lfloor \log d \rfloor} d_i 2^i$

• Fast exponentiation:

```
1. y \coloneqq 1;
```

2. for $i := \lfloor \log d \rfloor$ to 0 do

```
3. y = y^2 \mod n;
```

- 4. **if** $d_i = 1$ **then** $y := y \cdot x \mod n$;
- 5. **return** *y*;
- Example: $d = 22 = 10110_2$

Running Time

Theorem: One iteration of the Miller-Rabin test can be implemented with running time $O(\log^2 n \cdot \log \log n \cdot \log \log \log n)$.

- **1.** if n is even then return (n = 2)
- 2. compute s, d such that $n 1 = 2^s d$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x \coloneqq a^d \mod n$;
- 5. if x = 1 or x = n 1 then return true;
- 6. for r := 1 to s 1 do
- 7. $x \coloneqq x^2 \bmod n$;
- 8. if x = 1 then return true;
- 9. return false;

Deterministic Primality Test

- If a conjecture called the generalized Riemann hypothesis (GRH) is true, the Miller-Rabin test can be turned into a polynomialtime, deterministic algorithm
 - \rightarrow It is then sufficient to try all $a \in \{1, ..., O(\log^2 n)\}$
- It has long not been proven whether a deterministic, polynomial-time algorithm exist
- In 2002, Agrawal, Kayal, and Saxena gave an $\tilde{O}(\log^{12} n)$ -time deterministic algorithm
 - Has been improved to $\tilde{O}(\log^6 n)$
- In practice, the randomized Miller-Rabin test is still the fastest algorithm

Randomized Quicksort

Quicksort:

S v $S_{\ell} < v$ v $S_r > v$

function Quick (S: sequence): sequence;

{returns the sorted sequence *S*}

begin

 $\begin{array}{l} \textbf{if } \#S \leq 1 \text{ then } \textbf{return } S \\ \textbf{else } \{ \text{ choose pivot element } v \text{ in } S; \\ \text{partition } S \text{ into } S_{\ell} \text{ with elements } < v, \\ \text{and } S_r \text{ with elements } > v \\ \textbf{return } \boxed{ \text{Quick}(S_{\ell}) } \boxed{ v } \boxed{ \text{Quick}(S_r) } \end{array}$

end;

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:

- Let's just count the number of comparisons
- In the partitioning step, all n-1 non-pivot elements have to be compared to the pivot
- Number of comparisons:

n-1 + #comparisons in recursive calls

• If rank of pivot is r:
recursive calls with r-1 and n-r elements

Random variables:

- C: total number of comparisons (for a given array of length n)
- R: rank of first pivot
- C_{ℓ} , C_r : number of comparisons for the 2 recursive calls

$$\mathbb{E}[C] = n - 1 + \mathbb{E}[C_{\ell}] + \mathbb{E}[C_r]$$

Law of Total Expectation:

$$\mathbb{E}[C] = \sum_{\substack{r=1\\n}}^{n} \mathbb{P}(R=r) \cdot \mathbb{E}[C|R=r]$$

$$= \sum_{r=1}^{n} \mathbb{P}(R=r) \cdot (n-1+\mathbb{E}[C_{\ell}|R=r] + \mathbb{E}[C_{r}|R=r])$$

We have seen that:

$$\mathbb{E}[C] = \sum_{r=1}^{n} \mathbb{P}(R=r) \cdot (n-1+\mathbb{E}[C_{\ell}|R=r] + \mathbb{E}[C_{r}|R=r])$$

Define:

• T(n): expected number of comparisons when sorting n elements

$$\mathbb{E}[C] = T(n)$$

$$\mathbb{E}[C_{\ell}|R = r] = T(r - 1)$$

$$\mathbb{E}[C_r|R = r] = T(n - r)$$

Recursion:

$$T(n) = \sum_{r=1}^{n} \frac{1}{n} \cdot (n-1+T(r-1)+T(n-r))$$

$$T(0) = T(1) = 0$$

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

Proof:

$$T(n) = \sum_{r=1}^{n} \frac{1}{n} \cdot (n-1+T(r-1)+T(n-r)), \qquad T(0) = 0$$

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

Proof:

$$T(n) \le n - 1 + \frac{4}{n} \cdot \int_{1}^{n} x \ln x \, dx$$

$$\int x \ln x \, dx = \frac{x^{2} \ln x}{2} - \frac{x^{2}}{4}$$

Alternative Analysis

Array to sort: [7,3,1,10,14,8,12,9,4,6,5,15,2,13,11]

Viewing quicksort run as a tree:

Comparisons

- Comparisons are only between pivot and non-pivot elements
- Every element can only be the pivot once:
 - → every 2 elements can only be compared once!
- W.I.o.g., assume that the elements to sort are 1, 2, ..., n
- Elements i and j are compared if and only if either i or j is a pivot before any element h: i < h < j is chosen as pivot
 - i.e., iff i is an ancestor of j or j is an ancestor of i

$$\mathbb{P}(\text{comparison betw. } i \text{ and } j) = \frac{2}{j-i+1}$$

Counting Comparisons

Random variable for every pair of elements (i, j):

$$X_{ij} = \begin{cases} 1, & \text{if there is a comparison between } i \text{ and } j \\ 0, & \text{otherwise} \end{cases}$$

Number of comparisons: X

$$X = \sum_{i < j} X_{ij}$$

• What is $\mathbb{E}[X]$?

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

Proof:

Linearity of expectation:

For all random variables $X_1, ..., X_n$ and all $a_1, ..., a_n \in \mathbb{R}$,

$$\mathbb{E}\left[\sum_{i}^{n} a_{i} X_{i}\right] = \sum_{i}^{n} a_{i} \mathbb{E}[X_{i}].$$

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

Proof:

$$\mathbb{E}[X] = 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} = 2\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{1}{k}$$

Types of Randomized Algorithms

Las Vegas Algorithm:

- always a correct solution
- running time is a random variable
- **Example:** randomized quicksort, contention resolution

Monte Carlo Algorithm:

- probabilistic correctness guarantee (mostly correct)
- fixed (deterministic) running time
- Example: primality test

Minimum Cut

Reminder: Given a graph G = (V, E), a cut is a partition (A, B) of V such that $V = A \cup B$, $A \cap B = \emptyset$, $A, B \neq \emptyset$

Size of the cut (A, B): # of edges crossing the cut

• For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size $\lambda(G)$)

Maximum-flow based algorithm:

- Fix s, compute min s-t-cut for all $t \neq s$
- $O(m \cdot \lambda(G)) = O(mn)$ per s-t cut
- Gives an $O(mn\lambda(G)) = O(mn^2)$ -algorithm

Best-known deterministic algorithm: $O(mn + n^2 \log n)$

Edge Contractions

 In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

Contracting edge $\{u, v\}$:

- Replace nodes u, v by new node w
- For all edges $\{u, x\}$ and $\{v, x\}$, add an edge $\{w, x\}$
- Remove self-loops created at node w

Properties of Edge Contractions

Nodes:

- After contracting $\{u, v\}$, the new node represents u and v
- After a series of contractions, each node represents a subset of the original nodes

Cuts:

- Assume in the contracted graph, w represents nodes $S_w \subset V$
- The edges of a node w in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $(S_w, V \setminus S_w)$

Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do
 contract a uniformly random edge
return cut induced by the last two remaining nodes
 (cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum cut with probability at least $1/O(n^2)$.

We will show this next.

Theorem: The random contraction algorithm can be implemented in time $O(n^2)$.

- There are n-2 contractions, each can be done in time O(n).
- You will show this in the exercises.

Contractions and Cuts

Lemma: If two original nodes $u, v \in V$ are merged into the same node of the contracted graph, there is a path connecting u and v in the original graph s.t. all edges on the path are contracted.

- Contracting an edge $\{x, y\}$ merges the node sets represented by x and y and does not change any of the other node sets.
- The claim the follows by induction on the number of edge contractions.

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) cannot get smaller.

Proof:

- All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph G as follows:
 - For a node u of the contracted graph, let S_u be the set of original nodes that have been merged into u (the nodes that u represents)
 - Consider a cut (A, B) of the contracted graph
 - -(A',B') with

$$A' \coloneqq \bigcup_{u \in A} S_u$$
, $B' \coloneqq \bigcup_{v \in B} S_v$

is a cut of G.

- The edges crossing cut (A, B) are in one-to-one correspondence with the edges crossing cut (A', B').

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (A, B) of the input graph G if and only if it never contracts an edge crossing (A, B).

Proof:

- 1. If an edge crossing (A, B) is contracted, a pair of nodes $u \in A$, $v \in V$ is merged into the same node and the algorithm outputs a cut different from (A, B).
- 2. If no edge of (A, B) is contracted, no two nodes $u \in A$, $v \in B$ end up in the same contracted node because every path connecting u and v in G contains some edge crossing (A, B)

In the end there are only 2 sets \rightarrow output is (A, B)

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k, G has at least kn/2 edges.

- Min cut has size $k \Longrightarrow$ all nodes have degree $\ge k$
 - A node v of degree < k gives a cut $(\{v\}, V \setminus \{v\})$ of size < k
- Number of edges $m = \frac{1}{2} \cdot \sum_{v} \deg(v)$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Before contraction i, there are n+1-i nodes \rightarrow and thus $\geq (n+1-i)k/2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$\frac{k}{\frac{(n+1-i)k}{2}} = \frac{2}{n+1-i}.$$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most $^2/_{n+1-i}$.
- Event \mathcal{E}_i : edge contracted in step i is **not** crossing (A, B)

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

- $\mathbb{P}(\mathcal{E}_{i+1}|\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_i) = \frac{2}{n-i}$
- No edge crossing (A, B) contracted: event $\mathcal{E} = \bigcap_{i=1}^{n-2} \mathcal{E}_i$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O(n^2 \log n)$ times, one of the $O(n^2 \log n)$ instances returns a min. cut w.h.p.

Proof:

• Probability to not get a minimum cut in $c \cdot \binom{n}{2} \cdot \ln n$ iterations:

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{c \cdot \binom{n}{2} \cdot \ln n} < e^{-c \ln n} = \frac{1}{n^c}$$

Corollary: The contraction algorithm allows to compute a minimum cut in $O(n^4 \log n)$ time w.h.p.

• Each instance can be implemented in $O(n^2)$ time. (O(n) time per contraction)

Can We Do Better?

• Time $O(n^4 \log n)$ is not very spectacular, a simple max flow based implementation has time $O(n^4)$.

However, we will see that the contraction algorithm is nevertheless very interesting because:

- The algorithm can be improved to beat every known deterministic algorithm.
- 1. It allows to obtain strong statements about the distribution of cuts in graphs.

Better Randomized Algorithm

Recall:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Throughout the algorithm, the edge connectivity is at least k and therefore each node has degree $\geq k$
- Before contraction i, there are n+1-i nodes and thus at least (n+1-i)k/2 edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$\frac{k}{\frac{(n+1-i)k}{2}} = \frac{2}{n+1-i}.$$

Improving the Contraction Algorithm

• For a specific min cut (A, B), if (A, B) survives the first i contractions,

$$\mathbb{P}(\text{edge crossing } (A, B) \text{ in contraction } i + 1) \leq \frac{2}{n - i}.$$

- Observation: The probability only gets large for large i
- Idea: The early steps are much safer than the late steps.
 Maybe we can repeat the late steps more often than the early ones.

Safe Contraction Phase

Lemma: A given min cut (A, B) of an n-node graph G survives the first $n - \left\lceil n \middle/ \sqrt{2} + 1 \right\rceil$ contractions, with probability $> 1 \middle/ 2$.

- Event \mathcal{E}_i : cut (A, B) survives contraction i
- Probability that (A, B) survives the first n t contractions:

Better Randomized Algorithm

Let's simplify a bit:

- Pretend that $n/\sqrt{2}$ is an integer (for all n we will need it).
- Assume that a given min cut survives the first $n n/\sqrt{2}$ contractions with probability $\geq 1/2$.

contract(G, t):

• Starting with n-node graph G, perform n-t edge contractions such that the new graph has t nodes.

mincut(G):

- 1. $X_1 := \min(\cot(G, n/\sqrt{2}));$
- 2. $X_2 := \min(\cot(G, n/\sqrt{2}));$
- 3. **return** min $\{X_1, X_2\}$;

Success Probability

mincut(G):

- 1. $X_1 := \min(\cot(G, n/\sqrt{2}));$
- 2. $X_2 := \operatorname{mincut}\left(\operatorname{contract}\left(G, n/\sqrt{2}\right)\right);$
- 3. **return** min{ X_1, X_2 };

P(n): probability that the above algorithm returns a min cut when applied to a graph with n nodes.

• Probability that X_1 is a min cut \geq

Recursion:

Success Probability

Theorem: The recursive randomized min cut algorithm returns a minimum cut with probability at least $1/\log_2 n$.

Proof (by induction on n):

$$P(n) = P\left(\frac{n}{\sqrt{2}}\right) - \frac{1}{4} \cdot P\left(\frac{n}{\sqrt{2}}\right)^2, \qquad P(2) = 1$$

Running Time

1.
$$X_1 := \min(\cot(G, n/\sqrt{2}));$$

- 2. $X_2 := \min(\cot(G, n/\sqrt{2}));$
- 3. **return** min $\{X_1, X_2\}$;

Recursion:

- T(n): time to apply algorithm to n-node graphs
- Recursive calls: $2T \binom{n}{\sqrt{2}}$
- Number of contractions to get to $n/\sqrt{2}$ nodes: O(n)

$$T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + O(n^2), \qquad T(2) = O(1)$$

Running Time

Theorem: The running time of the recursive, randomized min cut algorithm is $O(n^2 \log n)$.

Proof:

Can be shown in the usual way, by induction on n

Remark:

- The running time is only by an $O(\log n)$ -factor slower than the basic contraction algorithm.
- The success probability is exponentially better!

Number of Minimum Cuts

- Given a graph G, how many minimum cuts can there be?
- Or alternatively: If G has edge connectivity k, how many ways are there to remove k edges to disconnect G?
- Note that the total number of cuts is large.

Number of Minimum Cuts

Example: Ring with *n* nodes

- Minimum cut size: 2
- Every two edges induce a min cut
- Number of edge pairs:

 $\binom{n}{2}$

 Are there graphs with more min cuts?

Number of Min Cuts

Theorem: The number of minimum cuts of a graph is at most $\binom{n}{2}$.

- Assume there are s min cuts
- For $i \in \{1, ..., s\}$, define event C_i : $C_i \coloneqq \{\text{basic contraction algorithm returns min cut } i\}$
- We know that for $i \in \{1, ..., s\}$: $\mathbb{P}(\mathcal{C}_i) = 1/\binom{n}{2}$
- Events $C_1, ..., C_s$ are disjoint:

$$\mathbb{P}\left(\bigcup_{i=1}^{s} \mathcal{C}_{i}\right) = \sum_{i=1}^{s} \mathbb{P}(\mathcal{C}_{i}) = \frac{s}{\binom{n}{2}}$$