)

Chapter 8
Online Algorithms

Algorithm Theory
WS 2013/14

Fabian Kuhn

UNI

FREIBURG

Online Computations

UNI
I

FREIBURG

e Sometimes, an algorithm has to start processing the input
before the complete input is known

 For example, when storing data in a data structure, the
sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output
step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole
input before computing the output.

e Some problems are inherently online

— Especially when real-time requests have to be processed over a
significant period of time

Algorithm Theory, WS 2013/14 Fabian Kuhn 2

UNI

Competitive Ratio

FREIBURG

e Let’s again consider optimization problems

— For simplicity, assume, we have a minimization problem

Optimal offline solution OPT(I):

e Best objective value that an offline algorithm can achieve for a
given input sequence [

Online solution ALG(I):
 Objective value achieved by an online algorithm ALG on [

Competitive Ratio: An algorithm has competitive ratioc = 1 if
ALG(I) < c-OPT() + «a.

e Ifa <0, wesaythat ALG is strictly c-competitive.

Algorithm Theory, WS 2013/14 Fabian Kuhn 3

Paging Algorithm

UNI
FREIBURG

Assume a simple memory hierarchy:

fast memory of size k

coe slow memory

If a memory page has to be accessed:

Page in fast memory (hit): take page from there
Page not fast memory (miss): leads to a page fault

Page fault: the page is loaded into the fast memory and some
page has to be evicted from the fast memory

Paging algorithm: decides which page to evict
Classical online problem: we don’t know the future accesses

Algorithm Theory, WS 2013/14 Fabian Kuhn 4

Paging Strategies

Least Recently Used (LRU):
 Replace the page that hasn’t been used for the longest time

First In First Out (FIFO):
 Replace the page that has been in the fast memory longest

Last In First Out (LIFO):
e Replace the page most recently moved to fast memory

Least Frequently Used (LFU):
 Replace the page that has been used the least

Longest Forward Distance (LFD):
 Replace the page whose next request is latest (in the future)
e LFD is not an online strategy!

Algorithm Theory, WS 2013/14 Fabian Kuhn

UNI
I

FREIBURG

LFD is Optimal

UNI
FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

For contradiction, assume that LFD is not optimal

Then there exists a finite input sequence o on which LFD is not
optimal (assume that the length of o is |o| = n)

Let OPT be an optimal solution for o such that
— OPT processes requests 1, ..., i in exactly the same way as LFD
— OPT processes request i + 1 differently than LFD

— Any other optimal strategy processes one of the first i + 1 requests
differently than LDF

Hence, OPT is the optimal solution that behaves in the same way
as LFD for as long as possible 2 we havei < n

Goal: Construct OPT' that is identical with LFD forreq. 1, ...,i + 1

Algorithm Theory, WS 2013/14 Fabian Kuhn 6

LFD is Optimal

UNI
FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 1: Request i + 1 does not lead to a page fault

 LFD does not change the content of the fast memory

 OPT behaves differently than LFD
- OPT replaces some page in the fast memory

— As up to request i + 1, both algorithms behave in the same way, they also
have the same fast memory content

— OPT therefore does not require the new page for requesti + 1

— Hence, OPT can also load that page later (without extra cost) = OPT’

Algorithm Theory, WS 2013/14 Fabian Kuhn 7

LFD is Optimal

UNI
I

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 2: Request i + 1 does lead to a page fault

e LFD and OPT move the same page into the fast memory, but they
evict different pages

— If OPT loads more than one page, all pages that are not required for
request i + 1 can also be loaded later

e Say, LFD evicts page p and OPT evicts page p’

e By the definition of LFD, p’ is required again before page p

Algorithm Theory, WS 2013/14 Fabian Kuhn 8

LFD is Optimal

UNI
FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 2: Request i + 1 does lead to a page fault

i+1 " < £:0OPTevictsp j':nextreq.forp’ j:nextreq.forp
| I I | | >
LFD evicts p £ < j': OPT loads p' (for first time after i + 1)

OPT evicts p’

a) OPT keeps p in fast memory until request £

— Evictp atrequest i + 1, keep p' instead and load p (instead of p’) back
into the fast memory at request ¢

b) OPT evicts p at request ¢’ < ¢
— Evictp atrequesti + 1 and p’ at request £’ (switch evictions of p and p’)

Algorithm Theory, WS 2013/14 Fabian Kuhn 9

Phase Partition

UNI
I

FREIBURG

We partition a given request sequence o into phases as follows:
 Phase 0: empty sequence
 Phase i: maximal sequence that immediately follows phase

[— 1 and contains at most k distinct page requests
Example sequence (k = 4):

2,5,12,5,4,2,10,8,3,6,2,2,6,6,8,3,2,6,9,10,6,3,10,2,1,3,5

Phase i Interval: interval starting with the second request of phase i
and ending with the first request of phase i + 1
* |f the last phase is phase p, phase-interval i is defined fori =1, ...,p—1

Algorithm Theory, WS 2013/14 Fabian Kuhn 10

UNI

Optimal Algorithm

FREIBURG

Lemma: Algorithm LFD has at least one page fault in each phase
i interval (fori =1, ...,p — 1, where p is the number of phases).

Proof: ..
phase i interval
A
N
requests:| g coe q’ coe
phase i phasei + 1

e ¢ isin fast memory after first request of phase i

e Number of distinct requests in phase i: k

e By maximality of phase i: g’ does not occur in phase i
 Number of distinct requests # g in phase interval i: k

—> at least one page fault

Algorithm Theory, WS 2013/14 Fabian Kuhn 11

LRU and FIFO Algorithms

UNI
FREIBURG

Lemma: Algorithm LFD has at least one page fault in each phase
interval i (fori = 1, ...,p — 1, where p is the number of phases).

Corollary: The number of page faults of an optimal offline
algorithm is at least p — 1, where p is the number of phases

Theorem: The LRU and the FIFO algorithms both have a
competitive ratio of at most k.

Proof:

 |In phase i only pages from phases before phase i are evicted
from the fast memory =2 < k page faults per phase

— As long as not all k pages from phase i have been requested, the least
recently used and the first inserted are from phases before i

— When all k pages have been requested, the k pages of phase i are in fast
memory and there are no more page faults in phase i

Algorithm Theory, WS 2013/14 Fabian Kuhn 12

Lower Bound

UNI
FREIBURG

Theorem: Even if the slow memory contains only k + 1 pages,
any deterministic algorithm has competitive ratio at least k.

Proof:
e Consider some given deterministic algorithm ALG

e Because ALG is deterministic, the content of the fast memory
after the first i requests is determined by the first i requests.

e Construct a request sequence inductively as follows:
— Assume some initial slow memory content

— The (i + 1)5t request is for the page which is not in fast memory after
the first i requests (throughout we only use k + 1 different pages)

e There is a page fault for every request

e OPT has a page fault at most every k requests
— There is always a page that is not required for the next k — 1 requests

Algorithm Theory, WS 2013/14 Fabian Kuhn 13

UNI

Randomized Algorithms

 We have seen that deterministic paging algorithms cannot be
better than k-competitive

e Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has
competitive ratio ¢ = 1 if for all inputs I,

E[ALG(I)] < ¢ - OPT(I) + a.

e Ifa <0, wesaythat ALG is strictly c-competitive.

Algorithm Theory, WS 2013/14 Fabian Kuhn 14

FREIBURG

Adversaries

UNI
FREIBURG

 Forrandomized algorithm, we need to distinguish between
different kinds of adversaries (providing the input)

Oblivious Adversary:

e Has to determine the complete input sequence before the
algorithm starts

— The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:
e The adversary knows how the algorithm reacted to earlier inputs

* online adaptive: adversary has no access to the randomness
used to react to the current input

e offline adaptive: adversary knows the random bits used by the
algorithm to serve the current input

Algorithm Theory, WS 2013/14 Fabian Kuhn 15

Lower Bound

UNI
FREIBURG

The adversaries can be ordered according to their strength

oblivious < online adaptive < offline adaptive

 An algorithm that works with an adaptive adversary also
works with an oblivious one

 Alower bound that holds against an oblivious adversary also
holds for the other 2

Theorem: No randomized paging algorithm can be better than
k-competitive against an online (or offline) adaptive adversary.

Proof: The same proof as for deterministic algorithms works.

e Are there better algorithms with an oblivious adversary?

Algorithm Theory, WS 2013/14 Fabian Kuhn 16

UNI

The Randomized Marking Algorithm

FREIBURG

e Every entry in fast memory has a marked flag

Initially, all entries are unmarked.
e If a pagein fast memory is accessed, it gets marked
e When a page fault occurs:

— If all k pages in fast memory are marked,
all marked bits are setto 0

— The page to be evicted is chosen uniformly at random
among the unmarked pages

— The marked bit of the new page in fast memory issetto 1

Algorithm Theory, WS 2013/14 Fabian Kuhn 17

Example

UNI
FREIBURG

Input Sequence (k=6):

2,53,3,68,2,9,5,7,1,2,5,2,3,7,4,8,1,2,7,5,3,6,9,6,10,4,1,2 ...
N ANG AN I '

~ ~ ~ ~
phase 1 phase 2 phase 3 phase 4

Fast Memory:

Observations:

e At the end of a phase, the fast memory entries are exactly the k
pages of that phase

e Atthe beginning of a phase, all entries get unmarked
e #page faults depends on #new pages in a phase

Algorithm Theory, WS 2013/14 Fabian Kuhn 18

Page Faults per Phase

Consider a fixed phase i:

Assume that of the k pages of phase i, m; are new and k — m;
are old (i.e., they already appear in phase i — 1)

All m; new pages lead to page faults (when they are requested
for the first time)

When requested for the first time, an old page leads to a page
fault, if the page was evicted in one of the previous page faults

We need to count the number of page faults for old pages

Algorithm Theory, WS 2013/14 Fabian Kuhn 19

|
FRE:BURG

UNI

Page Faults per Phase

UNI
I

FREIBURG

Phase i, jth old page that is requested (for the first time):

There is a page fault if the page has been evicted
There have been at most m; + j — 1 distinct requests before
The old places of the j — 1 first old pages are occupied

The other < m; pages are at uniformly random places among the
remaining k — (j — 1) places (oblivious adv.)

Probability that the old place of thejth old page is taken:
m.

< l
k=0 -1)

Algorithm Theory, WS 2013/14 Fabian Kuhn 20

Page Faults per Phase

UNI
I

FREIBURG

Phasei > 1, jth old page that is requested (for the first time):

* Probability that there is a page fault:
m;

<
k—(G—1)
Number of page faults for old pages in phase i: F;

k—m;

z IP(] th old page incurs page fault)

E[F;]

kml

Zk (,—1) e Z%

f=m;+1

m; - (H(k) —H(m;)) <m; - (H(k) — 1)

IA

Algorithm Theory, WS 2013/14 Fabian Kuhn 21

UNI

Competitive Ratio

FREIBURG

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2H(k) < 21In(k) + 2.

Proof:
e Assume that there are p phases

e Hpage faults of rand. marking algorithm in phase i: F; + m;

e We have seen that

e Let F be the total number of page faults of the algorithm:

[% p
E[F] < z(IE[Fi] +m) < Hk) - z m,
=1 =1

Algorithm Theory, WS 2013/14 Fabian Kuhn 22

Competitive Ratio

UNI

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2H(k) < 21In(k) + 2.

Proof:

Let F;" be the number of page faults in phase i in an opt. exec.

Phase 1: m, pages have to be replaces 2 F; > m,

Phasei > 1:
— Number of distinct page requests in phasesi — 1 and i: k + m;
— Therefore, F;_y + F; = m;

Total number of page requests F™:

Algorithm Theory, WS 2013/14 Fabian Kuhn 23

FREIBURG

Competitive Ratio

UNI
FREIBURG

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2H(k) < 21In(k) + 2.

Proof:
 Randomized marking algorithm:

p
E[F] < H(k) -zmi

e Optimal algorithm:

P

Il
[y

1
F ZE m;

l

Remark: It can be shown that no randomized algorithm has a
competitive ratio better than H (k) (against an obl. adversary)

Algorithm Theory, WS 2013/14 Fabian Kuhn 24

