
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
H. Ghodselahi, Y. Maus October 29, 2014

Algorithm Theory, Winter Term 2014/15

Problem Set 2

hand in (hard copied) by Thursday, 10:00, November 06, 2014, either before the lecture
or in the box corresponding to your group in building no. 51.

Exercise 1: Multiplication of Polynomials with FFT (7+2 points)

Given are the following two polynomials:

p(x) = x3 + 2x2 + 3x + 1,

q(x) = x + 1.000 · 104

a) Compute p(x)2 with the help of the FFT algorithm. Write down all intermediate results. To
simplify notation and calculations use 8-th roots of unity.

Those unfamiliar with complex numbers should ask fellow students for some help - calculating
roots of unity and multiplying 2 complex numbers is all you need for this exercise.

b) Compute DFT−1(DFT (q)) and round all occurring numbers to 4 significant digits (in base 10).1

Exercise 2: Fast Potentiation of Polynomials(1+2 points)

The following algorithm computes x2
`

for a real number x and ` ∈ N:

Algorithm 1: FastPotentiate(x, `)

while ` > 0 do
x := x · x;
` = `− 1;

end
return x

Assuming that multiplication of floats can be done in O(1) time, algorithm FastPotentiate(x, `) re-
quires time O(`).
Now, let p a polynomial of degree n and ` ∈ N. We use the idea of the above algorithm to obtain two
different algorithms to compute p2

`
, which we state in pseudo code:

Algorithm 2: PolyPower1(p, `)

set z to optimal value;
Compute (b0, . . . , bz−1) := DFT(p);
for i := 0 to z − 1 do

bi := FastPotentiate(bi, `)
end
return DFT−1(b)

1E.g. 1.0004 · 104 would be rounded to 1.000 · 104.

1



Algorithm 3: PolyPower2(p, `)

while ` > 0 do
set z to optimal value;
(b0, . . . , bz) := DFT(p);
for i := 0 to z do

bi := bi · bi
end
p := DFT−1(b);
` = `− 1

end
return p

a) Determine the (optimal) value of z in PolyPower1. Which roots of unity are (optimally) needed
for all (in Algorithms PolyPower1 and PolyPower2) invocations of the FFT algorithm?

b) Analyze the running time of both algorithms. (Assume that the time for multiplying two floats is
in O(1) and the time to run the FFT algorithm is in O(n · log n) when n-th roots of unity are used.

2


