October 29, 2014

Algorithm Theory, Winter Term 2014/15 Problem Set 2

hand in (hard copied) by Thursday, 10:00, November 06, 2014, either before the lecture or in the box corresponding to your group in building no. 51.

Exercise 1: Multiplication of Polynomials with FFT (7+2 points)

Given are the following two polynomials:

$$p(x) = x^{3} + 2x^{2} + 3x + 1$$
$$q(x) = x + 1.000 \cdot 10^{4}$$

a) Compute $p(x)^2$ with the help of the FFT algorithm. Write down all intermediate results. To simplify notation and calculations use 8-th roots of unity.

Those unfamiliar with complex numbers should ask fellow students for some help - calculating roots of unity and multiplying 2 complex numbers is all you need for this exercise.

b) Compute $DFT^{-1}(DFT(q))$ and round all occurring numbers to 4 significant digits (in base 10).¹

Exercise 2: Fast Potentiation of Polynomials(1+2 points)

The following algorithm computes $x^{2^{\ell}}$ for a real number x and $\ell \in \mathbb{N}$:

Algorithm 1: FastPotentiate (x, ℓ)
while $\ell > 0$ do
$x := x \cdot x;$
$\ell = \ell - 1;$
end
return x

Assuming that multiplication of floats can be done in $\mathcal{O}(1)$ time, algorithm FastPotentiate (x, ℓ) requires time $\mathcal{O}(\ell)$.

Now, let p a polynomial of degree n and $\ell \in \mathbb{N}$. We use the idea of the above algorithm to obtain two different algorithms to compute $p^{2^{\ell}}$, which we state in pseudo code:

Algorithm 2: PolyPower1 (p, ℓ)

set z to optimal value; Compute $(b_0, \ldots, b_{z-1}) := DFT(p)$; for i := 0 to z - 1 do $| b_i := FastPotentiate(b_i, \ell)$ end return $DFT^{-1}(b)$

¹E.g. $1.0004 \cdot 10^4$ would be rounded to $1.000 \cdot 10^4$.

Algorithm 3: PolyPower2 (p, ℓ)

while $\ell > 0$ do set z to optimal value; $(b_0, \dots, b_z) := DFT(p);$ for i := 0 to z do $\mid b_i := b_i \cdot b_i$ end $p := DFT^{-1}(b);$ $\ell = \ell - 1$ end return p

- a) Determine the (optimal) value of z in PolyPower1. Which roots of unity are (optimally) needed for all (in Algorithms PolyPower1 and PolyPower2) invocations of the FFT algorithm?
- b) Analyze the running time of both algorithms. (Assume that the time for multiplying two floats is in $\mathcal{O}(1)$ and the time to run the FFT algorithm is in $\mathcal{O}(n \cdot \log n)$ when *n*-th roots of unity are used.