Exercise 1: Fibonacci Heaps (0.5+2.5+3 points)

(a) Explain why the operations Insert and Decrease-Key on a Fibonacci Heap are so called lazy operations.

(b) Consider the following Fibonacci heap (black nodes are marked, white nodes are unmarked). How does the given Fibonacci heap look after a decrease-key(v, 2) operation and how does it look after a subsequent delete-min operation?

(c) Fibonacci heaps are only efficient in an amortized sense. The time to execute a single, individual operation can be large. Show that in the worst case, both the delete-min and the decrease-key operations can require time $\Omega(n)$ (for any heap size n).

Hint: Describe an execution in which there is a delete-min operation that requires linear time and describe an execution in which there is a decrease-key operation that requires linear time.
Exercise 2: Amortized Analysis (4 points)

We are given a data structure D, which supports the operations put and flush. The operation put stores a data item in D and has a running time of 1. Further, if D contains $k \geq 0$ items, the operation flush deletes $\lceil k/2 \rceil$ of the k data items stored in D and its running time is equal to k.

Prove that both operations have constant amortized running time by using the potential function method.