Albert-Ludwigs-Universitét, Inst. fiir Informatik
Prof. Dr. Fabian Kuhn
H. Ghodselahi, Y. Maus January 21, 2015

Algorithm Theory, Winter Term 2014/15
Problem Set 12

hand in (hard copied) by Thursday, 10:00, January 29, 2015, either before the lecture
or in the box corresponding to your group in building no. 51.

Exercise 1: Randomized Minimum s-t Cuts? (441 points)

a) Consider adapting the min-cut algorithm (Contraction Algorithm) to the problem of finding an s-¢
min-cut in an undirected graph. In this problem, we are given an undirected graph G = (V, E)
together with two distinguished nodes s € V and t € V. An s-t cut is a partition AUB =V of V
such that s € A and ¢t € B. The size of a cut (A4, B) is the number of edges u,v for which u € A
and v € B; we seek an s-t cut of minimum size. As the algorithm proceeds, the vertex s may get
merged into a new vertex as the result of an edge being contracted; we call this vertex the s-vertex
(initially s itself). Similarly, we have a t-vertex. As we run the contraction algorithm, we ensure
that we never contract an edge between the s-vertex and the ¢-vertex (this guarantees that in the
end, we get an s-t cut).

Show that there are graphs (not multi-graphs) in which the probability that this algorithm finds a
minimum s-t cut is exponentially small.

b) How large can the number of s —¢ min-cuts in an instance be? Give an example which proves your
claim.

Exercise 2: Load Balancing Approximation (4414141 points)

In class, we considered the following load balancing problem. There are n jobs and m machines; job
i requires t; time units to be executed. The objective is to assign each job to one of the m machines
such that the makespan (the maximum total processing time of a single machine) is minimized.

We have seen that if the jobs are sorted such that t; > t9 > --- > t,,, the following greedy algorithm
has an approximation ratio of 3/2. The greedy algorithm goes through the jobs in the given order
and always assigns a job to the machine with the least load. In this exercise, we want to understand
this algorithm a bit better.

As in the lecture, assume that 7" is the makespan of the solution constructed by the described algorithm
and assume that ¢ is a machine with load T in the greedy solution. Further, assume that n is the
last job that is scheduled on machine i (in class, we called this job j). Note that even without
jobs n + 1,...,n, the makespan of the algorithm is 7" and clearly the optimal makespan when only
considering jobs 1,...,7n cannot be larger than the optimal makespan for all the jobs.

(a) Show that if an optimal solution for jobs 1,...,7n assigns at most 2 jobs to each machine, the
algorithm computes an optimal solution (i.e., T' = T).

(b) Show that therefore, either t; < T™/3 or the greedy algorithm computes an optimal solution.
(c) Based on (a) and (b), conclude that the algorithm has approximation ratio at most 4/3.

(d) Try to find a bad input for the algorithm, where the ratio 7'/T* between the makespan of the
solution of the algorithm and the optimal makespan is at least a fixed constant larger than 1.
Hint: There is an example with m = 2 and n = O(1).



