
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
H. Ghodselahi, Y. Maus January 21, 2015

Algorithm Theory, Winter Term 2014/15

Problem Set 12

hand in (hard copied) by Thursday, 10:00, January 29, 2015, either before the lecture
or in the box corresponding to your group in building no. 51.

Exercise 1: Randomized Minimum s-t Cuts? (4+1 points)

a) Consider adapting the min-cut algorithm (Contraction Algorithm) to the problem of finding an s-t
min-cut in an undirected graph. In this problem, we are given an undirected graph G = (V,E)
together with two distinguished nodes s ∈ V and t ∈ V . An s-t cut is a partition A∪̇B = V of V
such that s ∈ A and t ∈ B. The size of a cut (A,B) is the number of edges u, v for which u ∈ A
and v ∈ B; we seek an s-t cut of minimum size. As the algorithm proceeds, the vertex s may get
merged into a new vertex as the result of an edge being contracted; we call this vertex the s-vertex
(initially s itself). Similarly, we have a t-vertex. As we run the contraction algorithm, we ensure
that we never contract an edge between the s-vertex and the t-vertex (this guarantees that in the
end, we get an s-t cut).

Show that there are graphs (not multi-graphs) in which the probability that this algorithm finds a
minimum s-t cut is exponentially small.

b) How large can the number of s− t min-cuts in an instance be? Give an example which proves your
claim.

Exercise 2: Load Balancing Approximation (4+1+1+1 points)

In class, we considered the following load balancing problem. There are n jobs and m machines; job
i requires ti time units to be executed. The objective is to assign each job to one of the m machines
such that the makespan (the maximum total processing time of a single machine) is minimized.
We have seen that if the jobs are sorted such that t1 ≥ t2 ≥ · · · ≥ tn, the following greedy algorithm
has an approximation ratio of 3/2. The greedy algorithm goes through the jobs in the given order
and always assigns a job to the machine with the least load. In this exercise, we want to understand
this algorithm a bit better.
As in the lecture, assume that T is the makespan of the solution constructed by the described algorithm
and assume that i is a machine with load T in the greedy solution. Further, assume that n̂ is the
last job that is scheduled on machine i (in class, we called this job j). Note that even without
jobs n̂ + 1, . . . , n, the makespan of the algorithm is T and clearly the optimal makespan when only
considering jobs 1, . . . , n̂ cannot be larger than the optimal makespan for all the jobs.

(a) Show that if an optimal solution for jobs 1, . . . , n̂ assigns at most 2 jobs to each machine, the
algorithm computes an optimal solution (i.e., T = T ∗).

(b) Show that therefore, either tn̂ ≤ T ∗/3 or the greedy algorithm computes an optimal solution.

(c) Based on (a) and (b), conclude that the algorithm has approximation ratio at most 4/3.

(d) Try to find a bad input for the algorithm, where the ratio T/T ∗ between the makespan of the
solution of the algorithm and the optimal makespan is at least a fixed constant larger than 1.
Hint: There is an example with m = 2 and n = O(1).

1


