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Divide-And-Conquer Principle
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e |Important algorithm design method

e Examples from Informatik 2:
e Sorting: Mergesort, Quicksort
e Binary search can be considered as a divide and conquer algorithm

e Further examples
e Median
e Compairing orders
e Delaunay triangulation / Voronoi diagram
e Closest pairs
e Line intersections
e Polynomial multiplication / FFT
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Example 1: Quicksort
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S, <wv % S, > v

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn §
else { choose pivot element v in §;
partition S into S, with elements < v,
and S, with elements > v
return | Quick(S,) v| Quick(S,)

end;
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Example 2: Mergesort
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Formulation of the D&C principle
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Divide-and-conquer method for solving a
problem instance of size n:

n < c: Solve the problem directly.

n > c: Divide the problem into k subproblems of
sizesn, ..., < n(k = 2).

Solve the k subproblems in the same way
(recursively).

Combine the partial solutions to generate a solution
for the original instance.
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Analysis
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Recurrence relation:

o T(n) : max. number of steps necessary for solving an instance of size n

a ifn<c
e T(n)=3Tny) +--+T(ny) ifn>c
+ cost for divide and combine

Special case: k=2,n, =n, ="/,

e cost for divide and combine: DC(n)
e T(1)=a
e T(n) =2T(n/2) +DC(n)
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Analysis, Example
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Recurrence relation:
T(n) <2-T(n/2) + cn?, T(1) <a

Guess the solution by repeated substitution:
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Analysis, Example
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Recurrence relation:
T(n) <2-T(n/2) + cn?,

Verify by induction:
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Analysis, Example
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Recurrence relation:
T(n) <2-T(n/2) + cn?, T(1) <a

Guess the solution by drawing the recursion tree:
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e Many web systems maintain user preferences / rankings on
things like books, movies, restaurants, ...

e Collaborative filtering:
— Predict user taste by comparing rankings of different users.

— If the system finds users with similar tastes, it can make
recommendations (e.g., Amazon)

e Coreissue: Compare two rankings

— Intuitively, two rankings (of movies) are more similar, the more pairs are
ordered in the same way

— Label the first user’s movies from 1 to n according to ranking
— Order labels according to second user’s ranking
— How far is this from the ascending order (of the first user)?
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Number of Inversions

Formal problem:
e Given:array A = |aq, a,, as, ..., a, | of distinct elements

 Objective: Compute number of inversions |

I=]{0<i<j<n|a>q))

e Example:A=[4 ,1,5,2,7,10, 6 |

* Naive solution:
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Divide and conquer
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i

N,

Ay

Ay

1. Divide array into 2 equal parts A, and A,

2. Recursively compute #inversions in A, and A,
3. Combine: add #pairs a; € Ap, a; € A, such that a; > q;

Ag a;

a.

J

Ay
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Combine Step
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Assume A, and A, are sorted

a; A{ a; Ar
0 0
L J

Idea:
* Maintain pointers i and j to go through the sorted parts

 While going through the sorted parts, we merge the two parts
into one sorted part (like in MergeSort)

and we count the number of inversions between the parts

Invariant:

e At each pointin time, all inversions involving some element left
of i (in A,) or left of j (in A,.) are counted

— and all others still have to be counted...
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Combine Step

Assume A, and A, are sorted

a; A{ a; Ar
0 0
L J

e Pointers i and j, initially pointing to first elements of A, and A,
e |If a; < CljZ

— a; is smallest among the remaining elements

— No inversion of a; and one of the remaining elements

— Do not change count
e |If a; > CljZ

— a; is smallest among the remaining elements

— a; is smaller than all remaining elements in A,

— Add number of remaining elements in A, to count

* |Increment point, pointing to smaller element
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Combine Step
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 Need sub-sequences in sorted order
e Then, combine step is like merging in merge sort

e Idea: Solve sorting and #inversions at the same time!

1. Partition A into two equal parts A, and A,
2. Recursively compute #inversions and sort A, and A,

3. Merge A, and A, to sorted sequence, at the same time, compute
number of inversions between elements a; in A, and a; in 4,
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Combine Step: Example
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e Assume A, and A, are sorted
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Analysis, Guessing
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Recurrence relation:
Tn)<2-T(n/2)+c-n, T(1) <c

Repeated substitution:
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Analysis, Induction
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Recurrence relation:
Tn)<2-T(n/2)+c-n, T(1) <c

Verify by induction:
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