

Chapter 1 Divide and Conquer

Algorithm Theory WS 2014/15

Fabian Kuhn

Divide-And-Conquer Principle

- Important algorithm design method
- Examples from Informatik 2:
 - Sorting: Mergesort, Quicksort
 - Binary search can be considered as a divide and conquer algorithm
- Further examples
 - Median
 - Compairing orders
 - Delaunay triangulation / Voronoi diagram
 - Closest pairs
 - Line intersections
 - Polynomial multiplication / FFT
 - ...

Example 1: Quicksort


```
v
function Quick (S: sequence): sequence;
{returns the sorted sequence S}
begin
      if \#S < 1 then return S
      else { choose pivot element v in S;
            partition S into S_{\ell} with elements < v,
            and S_r with elements > v
                                  v | Quick(S_r)
            return Quick(S_{\ell})
end;
```

Example 2: Mergesort

Formulation of the D&C principle

Divide-and-conquer method for solving a problem instance of size n:

1. Divide

 $n \le c$: Solve the problem directly.

n > c: Divide the problem into k subproblems of sizes $n_1, ..., n_k < n \ (k \ge 2)$.

2. Conquer

Solve the k subproblems in the same way (recursively).

3. Combine

Combine the partial solutions to generate a solution for the original instance.

Analysis

Recurrence relation:

• T(n): max. number of steps necessary for solving an instance of size n

•
$$T(n) = \begin{cases} a & \text{if } n \leq c \\ T(n_1) + \dots + T(n_k) & \text{if } n > c \\ + \cos t \text{ for divide and combine} \end{cases}$$

Special case:
$$k = 2$$
, $n_1 = n_2 = {n \choose 2}$

- cost for divide and combine: DC(n)
- T(1) = a
- T(n) = 2T(n/2) + DC(n)

Analysis, Example

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + cn^2, \qquad T(1) \le a$$

Guess the solution by repeated substitution:

Analysis, Example

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + cn^2, \qquad T(1) \le a$$

Verify by induction:

Analysis, Example

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + cn^2, \qquad T(1) \le a$$

Guess the solution by drawing the recursion tree:

Comparing Orders

 Many web systems maintain user preferences / rankings on things like books, movies, restaurants, ...

Collaborative filtering:

- Predict user taste by comparing rankings of different users.
- If the system finds users with similar tastes, it can make recommendations (e.g., Amazon)
- Core issue: Compare two rankings
 - Intuitively, two rankings (of movies) are more similar, the more pairs are ordered in the same way
 - Label the first user's movies from 1 to n according to ranking
 - Order labels according to second user's ranking
 - How far is this from the ascending order (of the first user)?

Number of Inversions

Formal problem:

• Given: array $A = [a_1, a_2, a_3, ..., a_n]$ of distinct elements

• **Objective**: Compute number of inversions *I*

$$I \coloneqq \left| \left\{ 0 \le i < j \le n \mid a_i > a_j \right) \right\} \right|$$

• Example: A = [4, 1, 5, 2, 7, 10, 6]

Naive solution:

Divide and conquer

- 1. Divide array into 2 equal parts A_{ℓ} and A_r
- 2. Recursively compute #inversions in A_{ℓ} and A_r
- 3. Combine: add #pairs $a_i \in A_\ell$, $a_j \in A_r$ such that $a_i > a_j$

Combine Step

Assume A_{ℓ} and A_{r} are sorted

Idea:

- Maintain pointers i and j to go through the sorted parts
- While going through the sorted parts, we merge the two parts into one sorted part (like in MergeSort)

and we count the number of inversions between the parts

Invariant:

- At each point in time, all inversions involving some element left of i (in A_{ℓ}) or left of j (in A_{r}) are counted
 - and all others still have to be counted...

Combine Step

Assume A_{ℓ} and A_r are sorted

- Pointers i and j, initially pointing to first elements of A_{ℓ} and A_r
- If $a_i < a_i$:
 - $-a_i$ is smallest among the remaining elements
 - No inversion of a_i and one of the remaining elements
 - Do not change count
- If $a_i > a_i$:
 - $-a_i$ is smallest among the remaining elements
 - $-a_i$ is smaller than all remaining elements in A_ℓ
 - Add number of remaining elements in A_ℓ to count
- Increment point, pointing to smaller element

Combine Step

- Need sub-sequences in sorted order
- Then, combine step is like merging in merge sort
- Idea: Solve sorting and #inversions at the same time!
 - 1. Partition A into two equal parts A_ℓ and A_r
 - 2. Recursively compute #inversions and sort A_{ℓ} and A_r

3. Merge A_{ℓ} and A_r to sorted sequence, at the same time, compute number of inversions between elements a_i in A_{ℓ} and a_j in A_r

Combine Step: Example

• Assume A_{ℓ} and A_r are sorted

Analysis, Guessing

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + c \cdot n$$
, $T(1) \le c$

Repeated substitution:

Analysis, Induction

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + c \cdot n$$
, $T(1) \le c$

Verify by induction: