)

Chapter 1
Divide and Conquer

Algorithm Theory
WS 2014/15

Fabian Kuhn

UNI

FREIBURG

Divide-And-Conquer Principle

UNI
FREIBURG

e |Important algorithm design method

e Examples from Informatik 2:
e Sorting: Mergesort, Quicksort
e Binary search can be considered as a divide and conquer algorithm

e Further examples
e Median
e Compairing orders
e Delaunay triangulation / Voronoi diagram
e Closest pairs
e Line intersections
e Polynomial multiplication / FFT

Algorithm Theory, WS 2013/14 Fabian Kuhn 2

Example 1: Quicksort

UNI

FREIBURG

S, <wv % S, > v

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn §
else { choose pivot element v in §;
partition S into S, with elements < v,
and S, with elements > v
return | Quick(S,) v| Quick(S,)

end;

Algorithm Theory, WS 2013/14 Fabian Kuhn

Example 2: Mergesort

FREIBURG

2
=
S
S S,
sort recursively sort recursively
\ \
Sy Sy
merge /
S
Algorithm Theory, WS 2013/14 Fabian Kuhn 4

Formulation of the D&C principle

UNI
I

FREIBURG

Divide-and-conquer method for solving a
problem instance of size n:

n < c: Solve the problem directly.

n > c: Divide the problem into k subproblems of
sizesn, ..., < n(k = 2).

Solve the k subproblems in the same way
(recursively).

Combine the partial solutions to generate a solution
for the original instance.

Algorithm Theory, WS 2013/14 Fabian Kuhn

Analysis

UNI
I

FREIBURG

Recurrence relation:

o T(n) : max. number of steps necessary for solving an instance of size n

a ifn<c
e T(n)=3Tny) +--+T(ny) ifn>c
+ cost for divide and combine

Special case: k=2,n, =n, ="/,

e cost for divide and combine: DC(n)
e T(1)=a
e T(n) =2T(n/2) +DC(n)

Algorithm Theory, WS 2013/14 Fabian Kuhn

Analysis, Example

UNI

FREIBURG

Recurrence relation:
T(n) <2-T(n/2) + cn?, T(1) <a

Guess the solution by repeated substitution:

Algorithm Theory, WS 2013/14 Fabian Kuhn

Analysis, Example

UNI

FREIBURG

Recurrence relation:
T(n) <2-T(n/2) + cn?,

Verify by induction:

Algorithm Theory, WS 2013/14 Fabian Kuhn

T(1) <a

Analysis, Example

UNI

FREIBURG

Recurrence relation:
T(n) <2-T(n/2) + cn?, T(1) <a

Guess the solution by drawing the recursion tree:

Algorithm Theory, WS 2013/14 Fabian Kuhn

UNI

Comparing Orders

FREIBURG

e Many web systems maintain user preferences / rankings on
things like books, movies, restaurants, ...

e Collaborative filtering:
— Predict user taste by comparing rankings of different users.

— If the system finds users with similar tastes, it can make
recommendations (e.g., Amazon)

e Coreissue: Compare two rankings

— Intuitively, two rankings (of movies) are more similar, the more pairs are
ordered in the same way

— Label the first user’s movies from 1 to n according to ranking
— Order labels according to second user’s ranking
— How far is this from the ascending order (of the first user)?

Algorithm Theory, WS 2013/14 Fabian Kuhn 10

Number of Inversions

Formal problem:
e Given:array A = |aq, a,, as, ..., a, | of distinct elements

 Objective: Compute number of inversions |

I=]{0<i<j<n|a>q))

e Example:A=[4 ,1,5,2,7,10, 6 |

* Naive solution:

Algorithm Theory, WS 2013/14 Fabian Kuhn

UNI
I

FREIBURG

Divide and conquer

UNI

FREIBURG

i

N,

Ay

Ay

1. Divide array into 2 equal parts A, and A,

2. Recursively compute #inversions in A, and A,
3. Combine: add #pairs a; € Ap, a; € A, such that a; > q;

Ag a;

a.

J

Ay

Algorithm Theory, WS 2013/14

Fabian Kuhn

12

Combine Step

UNI
I

FREIBURG

Assume A, and A, are sorted

a; A{ a; Ar
0 0
L J

Idea:
* Maintain pointers i and j to go through the sorted parts

 While going through the sorted parts, we merge the two parts
into one sorted part (like in MergeSort)

and we count the number of inversions between the parts

Invariant:

e At each pointin time, all inversions involving some element left
of i (in A,) or left of j (in A,.) are counted

— and all others still have to be counted...

Algorithm Theory, WS 2013/14 Fabian Kuhn 13

UNI

Combine Step

Assume A, and A, are sorted

a; A{ a; Ar
0 0
L J

e Pointers i and j, initially pointing to first elements of A, and A,
e |If a; < CljZ

— a; is smallest among the remaining elements

— No inversion of a; and one of the remaining elements

— Do not change count
e |If a; > CljZ

— a; is smallest among the remaining elements

— a; is smaller than all remaining elements in A,

— Add number of remaining elements in A, to count

* |Increment point, pointing to smaller element

Algorithm Theory, WS 2013/14 Fabian Kuhn 14

FREIBURG

Combine Step

UNI

FREIBURG

 Need sub-sequences in sorted order
e Then, combine step is like merging in merge sort

e Idea: Solve sorting and #inversions at the same time!

1. Partition A into two equal parts A, and A,
2. Recursively compute #inversions and sort A, and A,

3. Merge A, and A, to sorted sequence, at the same time, compute
number of inversions between elements a; in A, and a; in 4,

Algorithm Theory, WS 2013/14 Fabian Kuhn

15

Combine Step: Example

UNI

FREIBURG

e Assume A, and A, are sorted

3

5

8

13

14

18

24

25

30 6

19

21

23

28

32

33

Algorithm Theory, WS 2013/14

Fabian Kuhn

16

Analysis, Guessing

|
FRE:BURG

UNI

Recurrence relation:
Tn)<2-T(n/2)+c-n, T(1) <c

Repeated substitution:

Algorithm Theory, WS 2013/14 Fabian Kuhn 17

Analysis, Induction

UNI
I

FREIBURG

Recurrence relation:
Tn)<2-T(n/2)+c-n, T(1) <c

Verify by induction:

Algorithm Theory, WS 2013/14 Fabian Kuhn 18

