

Chapter 2 Greedy Algorithms

Algorithm Theory WS 2014/15

Fabian Kuhn

Scheduling Jobs with Deadlines

Given: n requests / jobs with deadlines:

- Goal: schedule all jobs with minimum lateness L
 - Schedule: s(i), f(i): start and finishing times of request iNote: $f(i) = s(i) + t_i$
- Lateness $L := \max \left\{ 0, \max_{i} \{f(i) d_i\} \right\}$
 - largest amount of time by which some job finishes late
- Many other natural objective functions possible...

Greedy Algorithm

Schedule by earliest deadline?

- Schedule in increasing order of d_i
- Ignores lengths of jobs: too simplistic?
- Earliest deadline is optimal!

Algorithm:

- Assume jobs are reordered such that $d_1 \le d_2 \le \cdots \le d_n$
- Start/finishing times:
 - First job starts at time s(1) = 0
 - Duration of job i is t_i : $f(i) = s(i) + t_i$
 - No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule \rightarrow alg. gives schedule with no idle time)

Example

Jobs ordered by deadline:

$$t_{1} = 5$$

$$t_{2} = 3$$

$$d_{2} = 10$$

$$d_{3} = 11$$

$$t_{3} = 3$$

$$0 1 2 3 4 5 6 7 8 9 10 11 12 13 14$$

Schedule:

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

Basic Facts

- 1. There is an optimal schedule with no idle time
 - Can just schedule jobs earlier...
- 2. Inversion: Job i scheduled before job j if $d_i > d_j$ Schedules with no inversions have the same maximum lateness
 - In schedules with no inversions, jobs are sorted by deadline
 - Only jobs with the same deadline can be permuted
 - For each deadline d, the maximum lateness remains the same if these jobs are reordered

Earliest Deadline is Optimal

Theorem:

There is an optimal schedule \mathcal{O} with no inversions and no idle time.

Proof:

- Consider optimal schedule O' with no idle time
- If \mathcal{O}' has inversions, \exists pair (i,j), s.t. i is scheduled immediately before j and $d_j < d_i$

- Claim: Swapping i and j gives schedule with
 - 1. Less inversions
 - 2. Maximum lateness no larger than in O'

Earliest Deadline is Optimal

Claim: Swapping i and j: maximum lateness no larger than in \mathcal{O}'

Exchange Argument

- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite...

Another Exchange Argument Example

- Minimum spanning tree (MST) problem
 - Classic graph-theoretic optimization problem
- Given: weighted graph
- Goal: spanning tree with min. total weight
- Several greedy algorithms work
- Kruskal's algorithm:
 - Start with empty edge set
 - As long as we do not have a spanning tree:
 add minimum weight edge that doesn't close a cycle

Kruskal Algorithm: Example

Kruskal is Optimal

- Basic exchange step: swap to edges to get from tree T to tree T'
 - Swap out edge not in Kruskal tree, swap in edge in Kruskal tree
 - Swapping does not increase total weight

Matroids

Same, but more abstract...

Matroid: pair(E, I)

- E: set, called the ground set
- *I*: finite family of finite subsets of E (i.e., $I \subseteq 2^E$), called **independent sets**

(E, I) needs to satisfy 3 properties:

- 1. Empty set is independent, i.e., $\emptyset \in I$ (implies that $I \neq \emptyset$)
- **2.** Hereditary property: For all $A \subseteq E$ and all $A' \subseteq A$,

if $A \in I$, then also $A' \in I$

3. Augmentation / Independent set exchange property: If $A, B \in I$ and |A| > |B|, there exists $x \in A \setminus B$ such that

$$\mathbf{B}' \coloneqq \mathbf{B} \cup \{\mathbf{x}\} \in \mathbf{I}$$

Example

- Fano matroid:
 - Smallest finite projective plane of order 2...

Matroids and Greedy Algorithms

Weighted matroid: each $e \in E$ has a weight w(e) > 0

Goal: find maximum weight independent set

Greedy algorithm:

- 1. Start with $S = \emptyset$
- 2. Add max. weight $e \in E \setminus S$ to S such that $S \cup \{e\} \in I$

Claim: greedy algorithm computes optimal solution

Greedy is Optimal

• S: greedy solution

A: any other solution