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Scheduling Jobs with Deadlines
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e Given: n requests / jobs with deadlines:

length t; = 10 Ideadline d; =11
t, =7 |d, =10
ts =3 |d; =13
t4_ — 5 Id4 =7
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e Goal: schedule all jobs with minimum lateness L

— Schedule: s(i), f (i): start and finishing times of request i
Note: f (i) = s(i) + ¢t;

e Lateness L := max {O, miax{f(i) — di}}

— largest amount of time by which some job finishes late

 Many other natural objective functions possible...
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Schedule by earliest deadline?
e Schedule in increasing order of d;
e Ignores lengths of jobs: too simplistic?

e Earliest deadline is optimal!

Algorithm:
e Assume jobs are reordered suchthatd; < d, <--<d,
e Start/finishing times:

— First job starts at time s(1) = 0

— Duration of job iist;: f(i) = s(i) + t;

— No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule = alg. gives schedule with no idle time)
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Jobs ordered by deadline:

t, =5 |d, =7
t, =3 |d, = 10
tau=7 ld, =11
t; = 3 |d; =13
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Schedule:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5
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Basic Facts

1. Thereis an optimal schedule with no idle time

— Can just schedule jobs earlier...

2. Inversion: Job i scheduled before job j if d; > d;
Schedules with no inversions have the same maximum lateness

In schedules with no inversions, jobs are sorted by deadline

— Only jobs with the same deadline can be permuted
For each deadline d, the maximum lateness remains the same if these
jobs are reordered
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Earliest Deadline is Optimal
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Theorem:
There is an optimal schedule O with no inversions and no idle time.

Proof:
e Consider optimal schedule O’ with no idle time

e If O’ hasinversions, 3 pair (i, ), s.t. i is scheduled immediately
before j and d; < d;

e Claim: Swapping i and j gives schedule with
1. Less inversions
2.  Maximum lateness no larger than in O’
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Earliest Deadline is Optimal
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Claim: Swapping i and j: maximum lateness no larger than in O’
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Exchange Argument
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General approach that often works to analyze greedy algorithms

Start with any solution

Define basic exchange step that allows to transform solution into
a new solution that is not worse

Show that exchange step move solution closer to the solution
produced by the greedy algorithm

Number of exchange steps to reach greedy solution should be
finite...
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Another Exchange Argument Example

UNI

FREIBURG

e Minimum spanning tree (MST) problem

— Classic graph-theoretic optimization problem

e Given: weighted graph
e Goal: spanning tree with min. total weight

e Several greedy algorithms work

e Kruskal’s algorithm:
— Start with empty edge set

— As long as we do not have a spanning tree:
add minimum weight edge that doesn’t close a cycle
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Kruskal Algorithm: Example
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Kruskal is Optimal s
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e Basic exchange step: swap to edges to get from tree T to tree T'
— Swap out edge not in Kruskal tree, swap in edge in Kruskal tree
— Swapping does not increase total weight
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Matroids

e Same, but more abstract...

Matroid: pair (E, I)
e E: set, called the ground set

e [I: finite family of finite subsets of E (i.e., [ € 2E),
called independent sets

(E,I) needs to satisfy 3 properties:

1. Empty setis independent, i.e., ® € I (implies that I + @)
2. Hereditary property: Forall A € E and all A" C 4,
if A€ I, thenalsoA’ €1
3. Augmentation / Independent set exchange property:
If A,B € [ and |A| > |B|, there exists x € A \ B such that

B':=BU{x}€el
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Example
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 Fano matroid:
— Smallest finite projective plane of order 2...
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Matroids and Greedy Algorithms

Weighted matroid: each e € E has a weight w(e) > 0
Goal: find maximum weight independent set

Greedy algorithm:

1. StartwithS =0

2. Add max. weighte € E\ StoSsuchthatS U {e} el

Claim: greedy algorithm computes optimal solution
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Greedy is Optimal
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e S:greedy solution
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