UNI
I

FREIBURG

"
Chapter 3

Dynamic Programming

Algorithm Theory
WS 2014/15

Fabian Kuhn

Weighted Interval Scheduling

UNI

FREIBURG

e G@Given: Set of intervals, e.g.

[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

e Each interval has a weight w

[0,10], 1 [11,14], 5
[1,3], 1 [4,7],5 |[7,9],4| [9,12],8
[1,4], 10 [5,8], 1 [8,10], 1 [12,14], 1
[3,5], 2 [5,12], 25
O 1 2 4 5 6 7 8 9 10 11 12 13 14

 Goal: Non-overlapping set of intervals of largest possible weight

— Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

 Example: Intervals are room requests of different importance

Algorithm Theory, WS 2014/15

Fabian Kuhn

Greedy Algorithms

UNI
FREIBURG

Choose available request with earliest finishing time:

[0,10], 1 [11,14],5
[1,3],1 [4,71,5 | [7,9],4| [9,12],2
[1,4], 10 [5,8],1 |[810],1 [12,14], 1
[3,5], 2 [5,12], 25

3 14

o 1 2 3 4 5 6 7 8 9 10 11 12 1

e Algorithm is not optimal any more

— It can even be arbitrarily bad...

 No greedy algorithm known that works

Algorithm Theory, WS 2014/15 Fabian Kuhn 3

Solving Weighted Interval Scheduling

|
FRE:BURG

UNI

e Interval i: start time s(i), finishing time: f (i), weight: w(i)

e Assume intervals 1, ..., n are sorted by increasing f (i)
- 0<f() <f@2) << f(n),for convenience: f(0) =0

e Simple observation:
Opt. solution contains interval n or it doesn’t contain interval n

Algorithm Theory, WS 2014/15 Fabian Kuhn 4

Solving Weighted Interval Scheduling

|
FRE:BURG

UNI

Interval i: start time s(i), finishing time: f (i), weight: w(i)

Assume intervals 1, ..., n are sorted by increasing f (i)
- 0<f() <f@2) << f(n),for convenience: f(0) =0

Simple observation:
Opt. solution contains interval n or it doesn’t contain interval n

Weight of optimal solution for only intervals 1, ..., k: W (k)
Define p(k) :== max{i € {0, ...,k — 1} : f(i) < s(k)}

Opt. solution does not contain intervaln: W(n) = W(n — 1)

Opt. solution contains interval n: W(n) = w(n) + W(p(n))

Algorithm Theory, WS 2014/15 Fabian Kuhn 5

Example

UNI

FREIBURG

Interval:

1 [0,5], w=2 p(1)=0
2 [1,7], 4 p(2)=0
3 [5,9], 4 p3)=1
4 [2,11], 5 p(4) =0
5 [9,12], 2 p(5) =3
6 [10,13],1 | p(6) =3
Algorithm Theory, WS 2014/15 Fabian Kuhn

Recursive Definition of Optimal Solution

UNI

FREIBURG

e Recall:
— W (k): weight of optimal solution with intervals 1, ..., k
— p(k): last interval to finish before interval k starts

e Recursive definition of optimal weight:

Vi > 1: W(k) = max{W (k — 1),w(k) + W(p(k))}
w(1) =w()

 Immediately gives a simple, recursive algorithm

Algorithm Theory, WS 2014/15 Fabian Kuhn

Running Time of Recursive Algorithm

|
FRE:BURG

UNI

1 p(1)=0
2 p(2)=0
3 p3)=1
4 p(4)=0
5 p(5) =3
6 p(6) =3
W (6)
/ \
W (5) W(3)
W (4) / \W(S) W (2) / \W(l)
| AN |
W(3) W (2) W) W(1)
S \
W(2) W) W)

|
4¢Y)

Algorithm Theory, WS 2014/15

Fabian Kuhn

Memoizing the Recursion

UNI
I

FREIBURG

 Running time of recursive algorithm: exponential!
* But, alg. only solves n different sub-problems: W (1), ..., W (n)

e There is no need to compute them multiple times

Memoization:
e Store already computed values for future use (recursive calls)

Efficient algorithm:

1. W]O0] := 0; compute values p(i)

2. fori:=1tondo

3. Wil == max{W|[i — 1],w(@) + W[p(i)]}
4. end

Algorithm Theory, WS 2014/15 Fabian Kuhn 9

Example

w=2 p(1) =0

w=4 p(2) =0

= 4 p3) =1
w=>5 p(4) =0
w=2 p(5) =3
w=1 p(6) =3
W = p(7) =5
w==6 p(8) =4

R N O Ul o WIN =

WOl W([1] W[2] W[3] W[4 W[5] W[6] W[7] W [8]
w: 0 2 4 6 6 8 8 11 12

N

Computing the schedule: store where you come from!

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI
I

FREIBURG

Matrix-chain multiplication

Given: sequence (chain) (4, 4,, ..., A,) of matrices

Goal: compute the product4;-4,-...- 4,

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

e asingle matrix

e orthe product of two fully parenthesized matrix products,
surrounded by parentheses.

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI
I

FREIBURG

Example

UNI

FREIBURG

All possible fully parenthesized matrix products of the chain

(A1, A,y A Ay):

Algorithm Theory, WS 2014/15

(A1 (A,(A434,)))
(A1 ((Az43) 44))
((A4;4;)(A34,))
((4,(A4,43)) 44)

(((A14,)43) Ay)

Fabian Kuhn

12

Different parenthesizations

|
FRE:BURG

UNI

Different parenthesizations correspond to different trees:

(41(A2(4341))) ((414,)(A;344))

(41((4243)A,)) (((414,)45)A,)

Algorithm Theory, WS 2014/15 Fabian Kuhn 13

UNI

Number of different parenthesizations

e Let P(n) be the number of alternative parenthesizations of
the product A - ...- A:

P(1) =1

n—1
P(n) = P(k) -P(n—k), forn = 2

1 M 4n 4mn
P(n+1) = ~ + 0| —
D=5~ <\/$)
P(n+1)=C, (n'"Catalan number)

e Thus: Exhaustive search needs exponential time!

Algorithm Theory, WS 2014/15 Fabian Kuhn 14

FREIBURG

Multiplying Two Matrices

UNI
FREIBURG

A=(ay), .. B=(by), A B=C=(c)

pXT
q
Cij = Z Ak by
k=1
Remark:
Algorithm Matrix-Mult Using this algorithm, multiplying
Input: (p X q) matrix 4, (g X r) matrix B | two (n x n) matrices requires n’
Output: (p X) matrixC = A- B multiplications. This can also be
1 fori:=1topdo done using 0(n?379)
2 forj:=1tordo multiplications.
3 Cli,j] = 0;
4 fork == 1toqgdo
5 Cli,j] = Cli,j] + Ali, k] - B[k, j]
Number of multielications and additions:p-q -
Algorithm Theory, WS 2014/1 Fabian Kuhn 15

Matrix-chain multiplication: Example

UNI
I

FREIBURG

Computation of the product A; 4, 4;, where

A : (50 x 5) matrix
A, : (5 x 100) matrix
A, : (100 x 10) matrix

a) Parenthesization ((A; 4,)A;) and (41 (4,A3)) require:

A= (A4, 4,): A" = (AyAs):
A'As: A A

Sum:

Algorithm Theory, WS 2014/15 Fabian Kuhn

16

Structure of an Optimal Parenthesization .

UNI
FREIBURG

e (A, ,):optimal parenthesization of A, - ...- A,

Forsome 1 <k <n: (A1) = (A1) - (Aks1.0))

 Any optimal solution contains optimal solutions for sub-problems
e Assume matrix 4; isa (d;_; X d;)-matrix

e Cost to solve sub-problem 4, - ...- A,., £ < r optimally: C(¢,71)

e Then:
C(a,b) = mkillb Clak)+C(k+1,b)+d, 1d; d,
as
Cla,a)=0

Algorithm Theory, WS 2014/15 Fabian Kuhn 17

Recursive Computation of Opt. Solution _

UNI
FREIBURG

Compute Al . AZ . A3 . A4 . A5:

€50
cazy Casp a4 @5 €ER C@sy
€2D €@ CEAD CAS5D
€2 €3 €23 C@4 T2 €23)) €35)) CHs)
CaDCE CEPTBEH CRPTCEH TEHCHSD

Algorithm Theory, WS 2014/15 Fabian Kuhn 18

Using Meomization

|
FRE:BURG

UNI

Compute Al . AZ . A3 . A4 . A5:

Compute A, - ...- A,:
e Each C(i,)), i < jis computed exactly once = 0(n?) values
e Each C(i,j) dir.dependson C(i,k), C(k,j)fori <k <j

Cost for each C(i,j): O(n) =2 overall time: 0(n3)

Algorithm Theory, WS 2014/15 Fabian Kuhn 19

UNI

Dynamic Programming

FREIBURG

,Memoization” for increasing the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is
simply looked up and returned

(without repeated computation!).

e Computing the solution: For each sub-problem, store how the
value is obtained (according to which recursive rule).

Algorithm Theory, WS 2014/15 Fabian Kuhn 20

Dynamic Programming

UNI

FREIBURG

Dynamic programming / memoization can be applied if

e Optimal solution contains optimal solutions to sub-problems
(recursive structure)

e Number of sub-problems that need to be considered is small

Algorithm Theory, WS 2014/15 Fabian Kuhn

21

Remarks about matrix-chain multiplication

UNI
FREIBURG

1. There is an algorithm that determines an optimal
parenthesization in time

O(n -logn).

2. There is a linear time algorithm that determines a
parenthesization using at most

1.155-C(1,n)
multiplications.

Algorithm Theory, WS 2014/15 Fabian Kuhn 22

