

Chapter 3 Dynamic Programming

Algorithm Theory WS 2014/15

Fabian Kuhn

Weighted Interval Scheduling

- **Given:** Set of intervals, e.g. [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]
- Each interval has a weight w

- Goal: Non-overlapping set of intervals of largest possible weight
 - Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping
- **Example:** Intervals are room requests of different importance

Greedy Algorithms

Choose available request with earliest finishing time:

- Algorithm is not optimal any more
 - It can even be arbitrarily bad...
- No greedy algorithm known that works

Solving Weighted Interval Scheduling

- Interval i: start time s(i), finishing time: f(i), weight: w(i)
- Assume intervals 1, ..., n are sorted by increasing f(i)
 - $-0 < f(1) \le f(2) \le \cdots \le f(n)$, for convenience: f(0) = 0
- Simple observation: Opt. solution contains interval n or it doesn't contain interval n

Solving Weighted Interval Scheduling

- Interval i: start time s(i), finishing time: f(i), weight: w(i)
- Assume intervals 1, ..., n are sorted by increasing f(i)
 - $-0 < f(1) \le f(2) \le \cdots \le f(n)$, for convenience: f(0) = 0
- Simple observation: Opt. solution contains interval n or it doesn't contain interval n
- Weight of optimal solution for only intervals 1, ..., k: W(k)Define $p(k) \coloneqq \max\{i \in \{0, ..., k-1\} : f(i) \le s(k)\}$
- Opt. solution does not contain interval n: W(n) = W(n-1)Opt. solution contains interval n: W(n) = w(n) + W(p(n))

Example

Interval:

Recursive Definition of Optimal Solution

- Recall:
 - -W(k): weight of optimal solution with intervals 1, ..., k
 - -p(k): last interval to finish before interval k starts
- Recursive definition of optimal weight:

$$\forall k > 1: W(k) = \max\{W(k-1), w(k) + W(p(k))\}$$

 $W(1) = w(1)$

• Immediately gives a simple, recursive algorithm

Running Time of Recursive Algorithm

Memoizing the Recursion

- Running time of recursive algorithm: exponential!
- But, alg. only solves n different sub-problems: W(1), ..., W(n)
- There is no need to compute them multiple times

Memoization:

Store already computed values for future use (recursive calls)

Efficient algorithm:

- 1. W[0] = 0; compute values p(i)
- 2. for $i \coloneqq 1$ to n do
- 3. $W[i] := \max\{W[i-1], w(i) + W[p(i)]\}$
- 4. **end**

Example

W[0]W[1]W[2]W[3]W[4]W[5]W[6]W[7]W[8]

Computing the schedule: store where you come from!

Matrix-chain multiplication

Given: sequence (chain) $\langle A_1, A_2, ..., A_n \rangle$ of matrices

Goal: compute the product $A_1 \cdot A_2 \cdot ... \cdot A_n$

Problem: Parenthesize the product in a way that minimizes the number of scalar multiplications.

Definition: A product of matrices is *fully parenthesized* if it is

- a single matrix
- or the product of two fully parenthesized matrix products, surrounded by parentheses.

Example

All possible fully parenthesized matrix products of the chain $\langle A_1, A_2, A_3, A_4 \rangle$:

$$(A_1(A_2(A_3A_4)))$$

$$(A_1((A_2A_3)A_4))$$

$$((A_1A_2)(A_3A_4))$$

$$((A_1(A_2A_3))A_4)$$

$$(((A_1A_2)A_3)A_4)$$

Different parenthesizations

Different parenthesizations correspond to different trees:

Number of different parenthesizations

• Let P(n) be the number of alternative parenthesizations of the product $A_1 \cdot ... \cdot A_n$:

$$P(1) = 1$$

$$P(n) = \sum_{k=1}^{n-1} P(k) \cdot P(n-k), \quad \text{for } n \ge 2$$

$$P(n+1) = \frac{1}{n+1} {2n \choose n} \approx \frac{4^n}{n\sqrt{\pi n}} + O\left(\frac{4^n}{\sqrt{n^5}}\right)$$

$$P(n+1) = C_n \quad (n^{th} \text{ Catalan number})$$

Thus: Exhaustive search needs exponential time!

Multiplying Two Matrices

$$A = (a_{ij})_{p \times q}$$
, $B = (b_{ij})_{q \times r}$, $A \cdot B = C = (c_{ij})_{p \times r}$ $c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj}$

Algorithm *Matrix-Mult*

```
Input: (p \times q) matrix A, (q \times r) matrix B

Output: (p \times r) matrix C = A \cdot B

1 for i \coloneqq 1 to p do

2 for j \coloneqq 1 to r do

3 C[i,j] \coloneqq 0;

4 for k \coloneqq 1 to q do

5 C[i,j] \coloneqq C[i,j] + A[i,k] \cdot B[k,j]
```

Remark:

Using this algorithm, multiplying two $(n \times n)$ matrices requires n^3 multiplications. This can also be done using $O(n^{2.376})$ multiplications.

Matrix-chain multiplication: Example

Computation of the product $A_1 A_2 A_3$, where

 A_1 : (50 × 5) matrix

 A_2 : (5 × 100) matrix

 A_3 : (100 × 10) matrix

a) Parenthesization $((A_1A_2)A_3)$ and $(A_1(A_2A_3))$ require:

$$A' = (A_1 A_2):$$

$$A^{\prime\prime}=(A_2A_3):$$

$$A'A_3$$
:

$$A_1A''$$
:

Sum:

Structure of an Optimal Parenthesization

• $(A_{\ell ...r})$: optimal parenthesization of $A_{\ell} \cdot ... \cdot A_{r}$

For some
$$1 \le k < n$$
: $(A_{1...n}) = ((A_{1...k}) \cdot (A_{k+1...n}))$

- Any optimal solution contains optimal solutions for sub-problems
- Assume matrix A_i is a $(d_{i-1} \times d_i)$ -matrix
- Cost to solve sub-problem $A_{\ell} \cdot ... \cdot A_{r}$, $\ell \leq r$ optimally: $C(\ell, r)$
- Then:

$$C(a,b) = \min_{a \le k < b} C(a,k) + C(k+1,b) + d_{a-1}d_k d_b$$

$$C(a,a)=0$$

Recursive Computation of Opt. Solution

Compute $A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5$:

Using Meomization

Compute $A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5$:

Compute $A_1 \cdot ... \cdot A_n$:

- Each C(i,j), i < j is computed exactly once $\rightarrow O(n^2)$ values
- Each C(i,j) dir. depends on C(i,k), C(k,j) for i < k < j

Cost for each C(i,j): $O(n) \rightarrow$ overall time: $O(n^3)$

Dynamic Programming

"Memoization" for increasing the efficiency of a recursive solution:

 Only the *first time* a sub-problem is encountered, its solution is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned

(without repeated computation!).

 Computing the solution: For each sub-problem, store how the value is obtained (according to which recursive rule).

Dynamic Programming

Dynamic programming / memoization can be applied if

- Optimal solution contains optimal solutions to sub-problems (recursive structure)
- Number of sub-problems that need to be considered is small

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal parenthesization in time

$$O(n \cdot \log n)$$
.

2. There is a linear time algorithm that determines a parenthesization using at most

$$1.155 \cdot C(1,n)$$

multiplications.