UNI
I

FREIBURG

"
Chapter 3

Dynamic Programming

Algorithm Theory
WS 2014/15

Fabian Kuhn



UNI

Dynamic Programming

FREIBURG

,Memoization” for increasing the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is
simply looked up and returned

(without repeated computation!).

e Computing the solution: For each sub-problem, store how the
value is obtained (according to which recursive rule).

Algorithm Theory, WS 2014/15 Fabian Kuhn 2



Dynamic Programming

UNI

FREIBURG

Dynamic programming / memoization can be applied if

e Optimal solution contains optimal solutions to sub-problems
(recursive structure)

e Number of sub-problems that need to be considered is small

Algorithm Theory, WS 2014/15 Fabian Kuhn



UNI

Knapsack

FREIBURG

e nitems1,..,n, eachitem has weight w; and value v;
e Knapsack (bag) of capacity W

e Goal: pack items into knapsack such that total weight is at
most W/ and total value is maximized:

max z V;

iES
s.t. S€{1,...,n}and Ewi <Ww
i€ES

e E.g.:jobs of length w; and value v;, server available for W
time units, try to execute a set of jobs that maximizes the
total value

Algorithm Theory, WS 2014/15 Fabian Kuhn 4



Recursive Structure?

UNI
I

FREIBURG

e Optimal solution: O
e Ifné¢ 0:0PT(n) =0PT(n—1)

e Whatifn € 0?

— Taking n gives value v,
— But, n also occupies space w,, in the bag (knapsack)
— There is space for W — w,, total weight left!

OPT(n) = w,, + optimal solution with first n — 1 items
and knapsack of capacity W — w,,

Algorithm Theory, WS 2014/15 Fabian Kuhn



A More Complicated Recursion

UNI

FREIBURG

OPT(k, x): value of optimal solution with items 1, ..., k
and knapsack of capacity x

Recursion:

Algorithm Theory, WS 2014/15 Fabian Kuhn



Dynamic Programming Algorithm

UNI
I

FREIBURG

Set up table for all possible OPT(k, x)-values
e Assume that all weights w; are integers!

1 2 3 w

n

Algorithm Theory, WS 2014/15 Fabian Kuhn

Row i, column j:

OPT(i,j)



Example

UNI
I

FREIBURG

e 8items: (3,2),(2,4),(4,1),(5,6),(3,3), 94,3% (5,4),(6,6)
Knapsack capacity: 12 weight value

e OPT(k,x) = max{OPT(k—1,x),0PT(k—1,x —wy) + v}
1 2 3 4 5 6 7 8 9 101112

O N O U1 B W N =

Algorithm Theory, WS 2014/15 Fabian Kuhn 8



Running Time of Knapsack Algorithm

UNI
FREIBURG

e Size of table:O(n-W)
e Time per table entry: 0(1) - overall time: O(nW)

e Computing solution (set of items to pick):
Follow < n arrows = 0(n) time (after filling table)

* Note: Time depends on W - can be exponential in n...
e And itis problematic if weights are not integers.

Algorithm Theory, WS 2014/15 Fabian Kuhn 9



UNI

String Matching Problems

FREIBURG

Edit distance:

e For two given strings A and B, efficiently compute the
edit distance D(A, B) (# edit operations to transform A4 into B)

as well as a minimum sequence of edit operations that
transform A into B.

e Example: mathematician > multiplication:

mtlj_al:\ipfl_&tio/%n

1 C

Algorithm Theory, WS 2014/15 Fabian Kuhn 10



String Matching Problems

UNI
FREIBURG

Edit distance D(A4, B) (between strings A and B):

ma-them--atimician

multiplicatio--n

Approximate string matching:

For a given text T, a pattern P and a distance d, find all

substrings P’ of T with D(P, P") <d.

Sequence alignment:
Find optimal alignments of DNA / RNA / ... sequences.

GAGCA-CTTGGATTCTCGG
- --CACGTGG-A-ACT- - -

Algorithm Theory, WS 2014/15 Fabian Kuhn 11



Edit Distance

UNI
FREIBURG

Given: Two strings A = a,a, ...a,, and B = by b, ... b,

Goal: Determine the minimum number D (4, B) of edit
operations required to transform A into B

Edit operations:

a) Replace a character from string A by a character from B
b) Delete a character from string A

c) Insert a character from string B into A

ma-them--at cC1an

multirplicatio--n

Algorithm Theory, WS 2014/15 Fabian Kuhn 12



Edit Distance — Cost Model

UNI
I

FREIBURG

Cost for replacing character a by b: c(a,b) = 0

e (Capture insert, delete by allowinga = cor b = &:
— Cost for deleting character a: c(a, €)
— Cost for inserting character b: c(&, b)

* Triangle inequality:
c(a,c) <c(a,b)+c(b,c)
— each character is changed at most once!

1, ifa#b

e Unit cost model: c(a,b) = {O ifq = b

Algorithm Theory, WS 2014/15 Fabian Kuhn

13



Recursive Structure

UNI

FREIBURG

e Optimal “alignment” of strings (unit cost model)
bbcadfagikccm and abbagflrgikacc:

-bbcagfa-girtk-ccm

abb-ad*tfl g

e Consists of optimal “alignments” of sub-strings, e.g.:
-bbcagfa —gik-ccm

abb-adfl 2" rgikacc-

* Edit distance between A; ,, = a; ...a,, and By , = by ...

D(A,B) = mln{D (A1 k» B1 £’) + D(Ak+1 m» Bes1 n)}

Algorithm Theory, WS 2014/15 Fabian Kuhn

b,:

14



Computation of the Edit Distance

|
FRE:BURG

UNI

let A, = a4 ...ay, By = by ...b, , and

Dy » == D(Ag, By)

Algorithm Theory, WS 2014/15

Fabian Kuhn

15



