



# Chapter 3 Dynamic Programming

Algorithm Theory WS 2014/15

**Fabian Kuhn** 

#### **Edit Distance**



**Given:** Two strings  $A=a_1a_2\dots a_m$  and  $B=b_1b_2\dots b_n$ 

**Goal:** Determine the minimum number D(A, B) of edit operations required to transform A into B

#### **Edit operations:**

- a) Replace a character from string A by a character from B
- **b) Delete** a character from string *A*
- c) Insert a character from string B into A

```
ma-them--atician
multiplicatio--n
```

#### Edit Distance – Cost Model



- Cost for replacing character a by b:  $c(a, b) \ge 0$
- Capture insert, delete by allowing  $a = \varepsilon$  or  $b = \varepsilon$ :
  - Cost for **deleting** character  $a: c(a, \varepsilon)$
  - Cost for **inserting** character  $b: c(\varepsilon, b)$
- Triangle inequality:

$$c(a,c) \le c(a,b) + c(b,c)$$

→ each character is changed at most once!

• Unit cost model: 
$$c(a,b) = \begin{cases} 1, & \text{if } a \neq b \\ 0, & \text{if } a = b \end{cases}$$

## Computation of the Edit Distance



Let 
$$A_k\coloneqq a_1\dots a_k$$
 ,  $B_\ell\coloneqq b_1\dots b_\ell$  , and 
$$D_{k,\ell}\coloneqq D(A_k,B_\ell)$$



B

# Optimal "Alignment" between $A_k$ and $B_\ell$



Three ways of ending an "alignment" between  $A_k$  and  $B_\ell$ :

## Computation of the Edit Distance



Three ways of ending an "alignment" between  $A_k$  and  $B_\ell$ :

1.  $a_k$  is replaced by  $b_\ell$ :

$$D_{k,\ell} = D_{k-1,\ell-1} + c(a_k, b_\ell)$$

2.  $a_k$  is deleted:

$$D_{k,\ell} = D_{k-1,\ell} + c(a_k, \varepsilon)$$

3.  $b_{\ell}$  is inserted:

$$D_{k,\ell} = D_{k,\ell-1} + c(\varepsilon, b_{\ell})$$

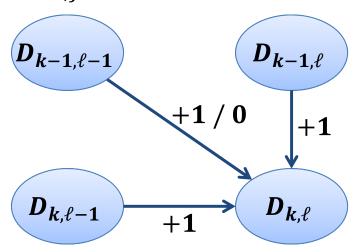
### Computing the Edit Distance



• Recurrence relation (for  $k, \ell \geq 1$ )

$$D_{k,\ell} = \min \begin{cases} D_{k-1,\ell-1} + c(a_k, b_\ell) \\ D_{k-1,\ell} + c(a_k, \varepsilon) \\ D_{k,\ell-1} + c(\varepsilon, b_\ell) \end{cases} = \min \begin{cases} D_{k-1,\ell-1} + 1 / 0 \\ D_{k-1,\ell} + 1 \\ D_{k,\ell-1} + 1 \end{cases}$$
unit cost model

• Need to compute  $D_{i,j}$  for all  $0 \le i \le k$ ,  $0 \le j \le \ell$ :



#### Recurrence Relation for the Edit Distance



#### **Base cases:**

$$D_{0,0} = D(\varepsilon, \varepsilon) = 0$$

$$D_{0,j} = D(\varepsilon, B_j) = D_{0,j-1} + c(\varepsilon, b_j)$$

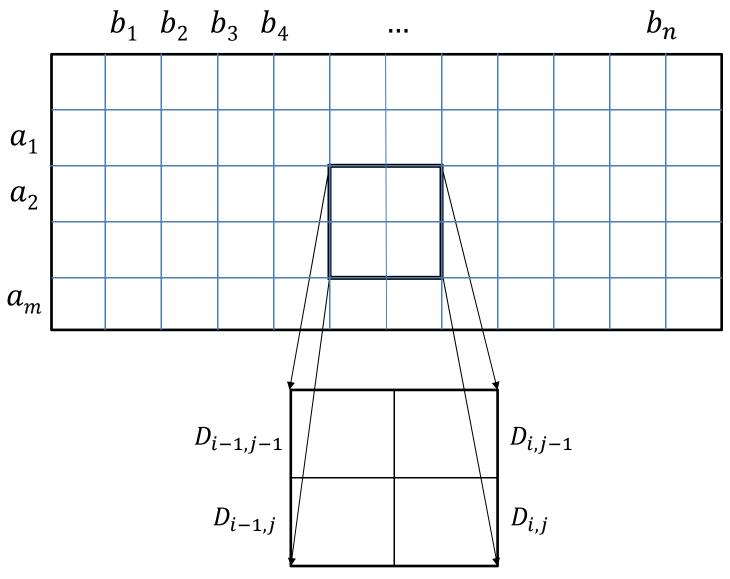
$$D_{i,0} = D(A_i, \varepsilon) = D_{i-1,0} + c(a_i, \varepsilon)$$

#### **Recurrence relation:**

$$D_{i,j} = \min egin{cases} D_{k-1,\ell-1} + c(a_k, b_\ell) \ D_{k-1,\ell} + c(a_k, oldsymbol{arepsilon}) \ D_{k,\ell-1} + c(oldsymbol{arepsilon}, oldsymbol{b}_\ell) \end{cases}$$

## Order of solving the subproblems





# Algorithm for Computing the Edit Distance



#### **Algorithm** *Edit-Distance*

**Input:** 2 strings  $A = a_1 \dots a_m$  and  $B = b_1 \dots b_n$ 

**Output:** matrix  $D = (D_{ij})$ 

$$1 D[0,0] := 0;$$

2 for i := 1 to m do D[i, 0] := i;

3 for 
$$j := 1$$
 to  $n$  do  $D[0, j] := j$ ;

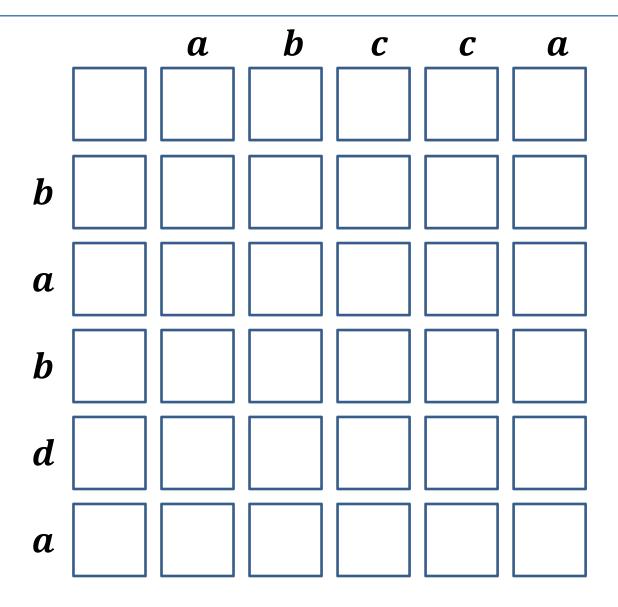
4 for 
$$i := 1$$
 to  $m$  do

5 for 
$$j := 1$$
 to  $n$  do

$$D[i,j] := \min \begin{cases} D[i-1,j] &+ c(a_i, \varepsilon) \\ D[i,j-1] &+ c(\varepsilon, b_j) \\ D[i-1,j-1] + c(a_i, b_j) \end{cases};$$

# Example





## Computing the Edit Operations



```
Algorithm Edit-Operations(i, j)
Input: matrix D (already computed)
Output: list of edit operations
1 if i = 0 and j = 0 then return empty list
2 if i \neq 0 and D[i, j] = D[i - 1, j] + 1 then
     return Edit-Operations(i-1,j) \circ "delete a_i"
3
  else if j \neq 0 and D[i, j] = D[i, j - 1] + 1 then
     return Edit-Operations(i, j - 1) \circ ,,insert b_i"
5
  else // D[i,j] = D[i-1,j-1] + c(a_i,b_i)
     if a_i = b_i then return Edit-Operations (i-1, j-1)
     else return Edit-Operations(i-1, j-1) \circ "replace a_i by b_i"
Initial call: Edit-Operations(m,n)
```

# **Edit Operations**



|   |   | a | <b>b</b> | C | C | a |
|---|---|---|----------|---|---|---|
|   | 0 | 1 | 2        | 3 | 4 | 5 |
| b | 1 | 1 | 1        | 2 | 3 | 4 |
| a | 2 | 1 | 2        | 2 | 3 | 3 |
| b | 3 | 2 | 1        | 2 | 3 | 4 |
| d | 4 | 3 | 2        | 2 | 3 | 4 |
| a | 5 | 4 | 3        | 3 | 3 | 3 |

## **Edit Distance: Summary**



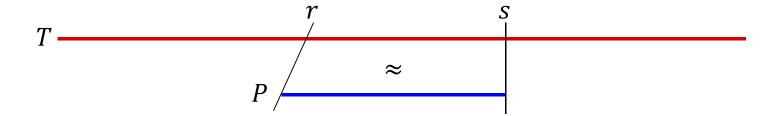
- Edit distance between two strings of length m and n can be computed in O(mn) time.
- Obtain the edit operations:
  - for each cell, store which rule(s) apply to fill the cell
  - track path backwards from cell (m, n)
  - can also be used to get all optimal "alignments"
- Unit cost model:
  - interesting special case
  - each edit operation costs 1



**Given:** strings  $T = t_1 t_2 \dots t_n$  (text) and  $P = p_1 p_2 \dots p_m$  (pattern).

**Goal:** Find an interval [r, s],  $1 \le r \le s \le n$  such that the sub-string  $T_{r,s} \coloneqq t_r \dots t_s$  is the one with highest similarity to the pattern P:

$$\underset{1 \le r \le s \le n}{\operatorname{arg min}} D(T_{r,s}, P)$$





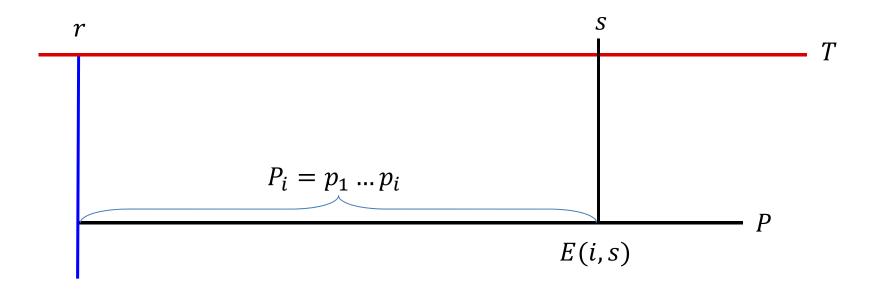
#### **Naive Solution:**

for all  $1 \le r \le s \le n$  do compute  $D(T_{r,s}, P)$  choose the minimum



#### A related problem:

• For each position s in the text and each position i in the pattern compute the minimum edit distance E(i,s) between  $P_i = p_1 \dots p_i$  and any substring  $T_{r,s}$  of T that ends at position s.





Three ways of ending optimal alignment between  $T_b$  and  $P_i$ :

1.  $t_b$  is replaced by  $p_i$ :

$$E_{b,i} = E_{b-1,i-1} + c(t_b, p_i)$$

2.  $t_b$  is deleted:

$$E_{b,i} = E_{b-1,i} + c(t_b, \varepsilon)$$

3.  $p_i$  is inserted:

$$E_{b,i} = E_{b,i-1} + c(\varepsilon, p_i)$$



#### Recurrence relation (unit cost model):

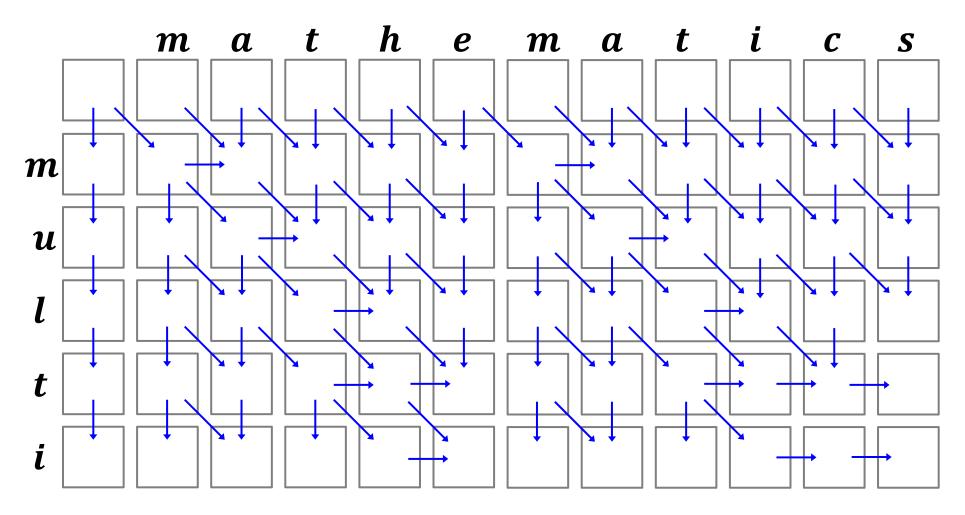
$$E_{b,i} = \min egin{cases} E_{b-1,i-1} + 1 \\ E_{b-1,i} + 1 \\ E_{b,i-1} + 1 \end{pmatrix}$$

#### **Base cases:**

$$E_{0,0} = 0$$
 $E_{0,i} = i$ 
 $E_{i,0} = 0$ 

## Example







- Optimal matching consists of optimal sub-matchings
- Optimal matching can be computed in O(mn) time
- Get matching(s):
  - Start from minimum entry/entries in bottom row
  - Follow path(s) to top row
- Algorithm to compute E(b,i) identical to edit distance algorithm, except for the initialization of E(b,0)

#### Related Problems from Bioinformatics



#### **Sequence Alignment:**

Find optimal alignment of two given DNA, RNA, or amino acid sequences.

#### **Global vs. Local Alignment:**

- Global alignment: find optimal alignment of 2 sequences
- Local alignment: find optimal alignment of sequence 1
   (patter) with sub-sequence of sequence 2 (text)