

Chapter 4 Data Structures

Algorithm Theory WS 2014/15

Fabian Kuhn

Priority Queue / Heap

- Stores (key,data) pairs (like dictionary)
- But, different set of operations:
- Initialize-Heap: creates new empty heap
- Is-Empty: returns true if heap is empty
- **Insert**(*key,data*): inserts (*key,data*)-pair, returns pointer to entry
- **Get-Min**: returns (*key,data*)-pair with minimum *key*
- **Delete-Min**: deletes minimum (*key,data*)-pair
- **Decrease-Key**(*entry*, *newkey*): decreases *key* of *entry* to *newkey*
- Merge: merges two heaps into one

Implementation of Dijkstra's Algorithm

Store nodes in a priority queue, use d(s, v) as keys:

- 1. Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- 2. All nodes $v \neq s$ are unmarked

- 3. Get unmarked node u which minimizes d(s, u):
- 4. mark node u
- 5. For all $e = \{u, v\} \in E$, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$
- 6. Until all nodes are marked

Analysis

Number of priority queue operations for Dijkstra:

• Initialize-Heap: 1

• Is-Empty: |*V*|

• Insert: **V**

• Get-Min: **V**

• Delete-Min: V

• Decrease-Key: |E|

• Merge: 0

Priority Queue Implementation

Implementation as min-heap:

→ complete binary tree,e.g., stored in an array

• Initialize-Heap: **0**(1)

• Is-Empty: O(1)

• Insert: $O(\log n)$

• Get-Min: o(1)

• Delete-Min: $O(\log n)$

• Decrease-Key: $O(\log n)$

• Merge (heaps of size m and $n, m \le n$): $O(m \log n)$

Better Implementation

- Can we do better?
- Cost of Dijkstra with complete binary min-heap implementation:

$$O(|E|\log|V|)$$

- Can be improved if we can make decrease-key cheaper...
- Cost of merging two heaps is expensive
- We will get there in two steps:

Binomial heap → Fibonacci heap

Definition: Binomial Tree

Binomial tree B_k of order $k \ (n \ge 0)$:

$$B_0 = \bigcirc$$

$$B_{k+1} = \bigcirc$$

$$B_k$$

$$B_k$$

Binomial Trees

Properties

1. Tree B_k has 2^k nodes

2. Height of tree B_k is k

3. Root degree of B_k is k

4. In B_k , there are exactly $\binom{k}{i}$ nodes at depth i

Binomial Coefficients

Binomial coefficient:

$$\binom{k}{i} = \frac{k!}{i! (k-i)!}$$
: # of size *i* subsets of a set of size *k*

• Property: $\binom{k}{i} = \binom{k-1}{i-1} + \binom{k-1}{i}$

Pascal triangle:

$$\begin{array}{c} & & 1 \\ & 1 & 1 \\ & 1 & 2 & 1 \\ & 1 & 3 & 3 & 1 \\ & 1 & 4 & 6 & 4 & 1 \\ 1 & 5 & 10 & 10 & 5 & 1 \end{array}$$

Number of Nodes at Depth i in B_k

Claim: In B_k , there are exactly $\binom{k}{i}$ nodes at depth i

Binomial Heap

Keys are stored in nodes of binomial trees of different order

 \boldsymbol{n} nodes: there is a binomial tree B_i of order i iff bit i of base-2 representation of n is 1.

Min-Heap Property:

Key of node $v \leq$ keys of all nodes in sub-tree of v

Example

- 11 keys: {2, 5, 8, 9, 12, 14, 17, 18, 20, 22, 25}
- Binary representation of n: $(11)_2 = 1011$ \rightarrow trees B_0 , B_1 , and B_3 present

Child-Sibling Representation

Structure of a node:

Link Operation

• Unite two binomial trees of the same order to one tree:

 $B_n \oplus B_n \Rightarrow B_{n+1}$

• Time: **0**(1)

Merge Operation

Merging two binomial heaps:

• For $i = 0, 1, ..., \log n$: If there are 2 or 3 binomial trees B_i : apply link operation to merge 2 trees into one binomial tree B_{i+1}

