)

Chapter 4
Data Structures

Algorithm Theory
WS 2014/15

Fabian Kuhn

UNI

FREIBURG

Priority Queue / Heap

UNI
I

FREIBURG

e Stores (key,data) pairs (like dictionary)

But, different set of operations:

e |nitialize-Heap: creates new empty heap

e |s-Empty: returns true if heap is empty

e Insert(key, data): inserts (key,data)-pair, returns pointer to entry
e Get-Min: returns (key,data)-pair with minimum key
 Delete-Min: deletes minimum (key,data)-pair
 Decrease-Key(entry,newkey): decreases key of entry to newkey

— entry: pointer to entry in data structure

 Merge: merges two heaps into one

Algorithm Theory, WS 2014/15 Fabian Kuhn 2

Definition: Binomial Tree

UNI

FREIBURG

Binomial tree B;, of order k (n = 0):

By = O

By =

Algorithm Theory, WS 2014/15 Fabian Kuhn

Binomial Trees

UNI

FREIBURG

B

B4 B, B3
| i M

Algorithm Theory, WS 2014/15 Fabian Kuhn

Properties

UNI

FREIBURG

1. Tree B, has 2% nodes

2. Height of tree By is k

3. Rootdegree of By is k

4. In By, there are exactly (’:) nodes at depth i

Algorithm Theory, WS 2014/15 Fabian Kuhn

Binomial Heap

UNI

FREIBURG

e Keys are stored in nodes of binomial trees of different order

n nodes: there is a binomial tree B; of order i iff
bit i of base-2 representation of nis 1.

 Min-Heap Property:

Key of node v < keys of all nodes in sub-tree of v

Algorithm Theory, WS 2014/15 Fabian Kuhn

Example

UNI
I

FREIBURG

e 11 keys: {2,5,8,9,12,14,17,18, 20,22, 25}

e Binary representation of n: (11), = 1011
- trees B, B, and B; present

B3

B,
(5) 2 17
(9 9 @ 8
12 (8 @5

22

Algorithm Theory, WS 2014/15 Fabian Kuhn 7

Link Operation

UNI

FREIBURG

e Unite two binomial trees of the same order to one tree:

l;nEBlin::>l;n+l

e Time: O(1 _
(1) : _
15 20
|_eo| o —--»T o
o /b = =0 &
o/ ® [
25 40 22
BZ BZ T o > o | @ o | o
'l
.
30
o | o
Algorithm Theory, WS 2014/15 Fabian Kuhn

-

Merge Operation

Merging two binomial heaps:
e Fori =0,1,..,logn:

If there are 2 or 3 binomial trees B;: apply link operation to
merge 2 trees into one binomial tree B; 4

BO BS B6 B9 BlO Bll
Ql —)—2 ;—2 i :f\: : »() : >f i
B, Bs Bg Bio Bi. Time:
»() >
C2 > % 7_< O(logn)
Bl B7 BS B9 Bll BlZ

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI
I

FREIBURG

Example

UNI
I

FREIBURG

(9 @3 5)
12 @8 U @ @0
22 25

Algorithm Theory, WS 2014/15

@

Fabian Kuhn

10

Operations

Initialize: create empty list of trees
Get minimum of queue: time O(1) (if we maintain a pointer)

Decrease-key at node v:

e Set key of node v to new key

e Swap with parent until min-heap property is restored
e Time: O(logn)

Insert key x into queue Q:
1. Create queue Q' of size 1 containing only x
2. Merge Q and Q'

e Time forinsert: O(logn)

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI
I

FREIBURG

Operations

UNI
I

FREIBURG

Delete-Min Operation:

 Smallest key is at the root of some tree
e Removing the root of a binomial tree:

Algorithm Theory, WS 2014/15 Fabian Kuhn

12

Operations

UNI
I

FREIBURG

Delete-Min Operation:

1. Find tree B; with minimum root r

2. Remove B; from queue Q = queue Q'

3. Children of r form new queue Q"

4. Merge queues Q' and Q"

e Overall time: O(logn)

Algorithm Theory, WS 2014/15 Fabian Kuhn

13

Delete-Min Example

|
FRE:BURG

UNI

@
9 @ @ ©

12 19 @5
22

Algorithm Theory, WS 2014/15

Fabian Kuhn

14

Complexities Binomial Heap

UNI
I

FREIBURG

Initialize-Heap: 0(1)

e Is-Empty: 0(1)
* Insert: O(logn)
e Get-Min: 0(1)

* Delete-Min: O(logn)
* Decrease-Key: O(logn)

e Merge (heaps of size mandn, m < n): O(log n)

Algorithm Theory, WS 2014/15 Fabian Kuhn

15

Can We Do Better?

UNI
FREIBURG

e Binomial heap:
insert, delete-min, and decrease-key cost O (logn)

* One of the operations insert or delete-min must cost (2(logn):

— Heap-Sort:
Insert n elements into heap, then take out the minimum n times

— (Comparison-based) sorting costs at least Q(nlogn).

e But maybe we can improve decrease-key and one of the other
two operations?

e Structure of binomial heap is not flexible:

— Simplifies analysis, allows to get strong worst-case bounds
— But, operations almost inherently need at least logarithmic time

Algorithm Theory, WS 2014/15 Fabian Kuhn 16

Fibonacci Heaps

UNI
I

FREIBURG

Lacy-merge variant of binomial heaps:
e Do not merge trees as long as possible...

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Variables:
e H.min: root of the tree containing the (a) minimum key

e H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

e H.size: number of nodes currently in H

Algorithm Theory, WS 2014/15 Fabian Kuhn 17

Trees in Fibonacci Heaps

UNI
I

FREIBURG

Structure of a single node v: /‘
parentl
T = key |degree ‘% 1
child/ mark
/

e v.child: points to circular, doubly linked and unordered list of
the children of v

e v.left, v.right: pointers to siblings (in doubly linked list)
e v.mark: will be used later...

Advantages of circular, doubly linked lists:
e Deleting an element takes constant time
e Concatenating two lists takes constant time

Algorithm Theory, WS 2014/15 Fabian Kuhn 18

Example

UNI

FREIBURG

¥

*(3)< 17 24

Algorithm Theory, WS 2014/15

VAN i

). (52 (38 30). 46

©:

41 %35 I;

Figure: Cormen et al., Introduction to Algorithms

Fabian Kuhn

19

UNI

Simple (Lazy) Operations

FREIBURG

Initialize-Heap H:
e H.rootlist := H.min := null

Merge heaps H and H':
e concatenate root lists
e update H.min

Insert element e into H:
* create new one-node tree containing e 2> H'
* merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2014/15 Fabian Kuhn 20

Operation Delete-Min

|
FRE:BURG

UNI

Delete the node with minimum key from H and return its element:

m = H.min;
if H.size > 0 then

remove H. min from H.rootlist;

add H.min. child (list) to H.rootlist
H.Consolidate();

A S

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. returnm

Algorithm Theory, WS 2014/15 Fabian Kuhn 21

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:
e rank(v): degree of v

Tree T
e rank(T): rank (degree) of root node of T

Heap H:
e rank(H): maximum degree of any node in H

Assumption (n: number of nodes in H):
rank(H) < D(n)

— for a known function D (n)

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI
I

FREIBURG

UNI

Merging Two Trees

FREIBURG

Given: Heap-ordered trees T, T' with rank(T) = rank(T")

e Assume: min-key of T < min-key of T’

Operation link(T,T'): link
T / \ T'

e Removes tree T' from root list

and adds T’ to child list of T QKQ @KQ

e rank(T) :==rank(T) + 1
e T'.mark := false

T

Algorithm Theory, WS 2014/15 Fabian Kuhn 23

Consolidation of Root List

UNI
I

FREIBURG

Array A pointing to find roots with the same rank:

0 1 2 D(n)
Consolidate:

| _ Time:
for i := 0 to D(n) do A[i] := null; O(|H.rootlist|+D(n))

while H.rootlist + null do
T := “delete and return first element of H.rootlist”
while A[rank(T)] # null do
T' = Alrank(T)];
Alrank(T)] = null;
T :=link(T,T")
Alrank(T)| =T
Create new H.rootlist and H.min

Algorithm Theory, WS 2014/15 Fabian Kuhn 24

O 0 N O Uk WwhE

Consolidate Example

link

----- - g@@

-

Algorithm Theory, WS 2014/15 Fabian Kuhn

Consolidate Example

link

Algorithm Theory, WS 2014/15 Fabian Kuhn

19 @

26

Consolidate Example

Algorithm Theory, WS 2014/15 Fabian Kuhn

27

Consolidate Example

link

Algorithm Theory, WS 2014/15 Fabian Kuhn

28

Consolidate Example

Algorithm Theory, WS 2014/15 Fabian Kuhn

29

Consolidate Example

Algorithm Theory, WS 2014/15 Fabian Kuhn

30

Operation Decrease-Key

|
FRE:BURG

UNI

Decrease-Key(v, x): (decrease key of node v to new value x)

if x = v. key then return;
v.key = x; update H. min,
if v € H.rootlist V x = v.parent. key then return
repeat
parent := v.parent;
H.cut(v);
v = parent;
until =(v.mark) Vv v € H.rootlist;

O 0 N O Uk WwhNhE

if v € H.rootlist then v.mark = true;

Algorithm Theory, WS 2014/15 Fabian Kuhn 31

Operation Cut(v)

UNI
I

FREIBURG

Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

if v & H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;
remove v from v.parent. child (list)
v.parent := null;
add v to H.rootlist

o U sEwWwhPeE

Algorithm Theory, WS 2014/15 Fabian Kuhn 32

Decrease-Key Example

UNI

FREIBURG

e Green nodes are marked

Algorithm Theory, WS 2014/15 Fabian Kuhn

33

Fibonacci Heap Marks

UNI

FREIBURG

History of a node v:
v is being linked to a node v.mark := false

a child of v is cut v.mark = true

a second child of v is cut H.cut(v)

* Hence, the boolean value v. mark indicates whether node v
has lost a child since the last time v was made the child of

another node.

Algorithm Theory, WS 2014/15 Fabian Kuhn 34

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

Delete-Min:

1. Delete min. root r and add r. child to H.rootlist
time: 0(1)

2. Consolidate H.rootlist
time: O(length of H.rootlist + D(n))

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

1. If new key < parent key, cut sub-tree of node v
time: 0(1)

2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearinn

Exercises: Both operations can take ®(n) time in the worst case!

Algorithm Theory, WS 2014/15 Fabian Kuhn

35

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

e Cost of delete-min and decrease-key can be O(n)...
— Seems a large price to pay to get insert and merge in O(1) time

 Maybe, the operations are efficient most of the time?

— It seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

e Can we show that the average cost per operation is small?

 We can =2 requires amortized analysis

Algorithm Theory, WS 2014/15 Fabian Kuhn

36

