

Chapter 4 Data Structures

Algorithm Theory WS 2014/15

Fabian Kuhn

Amortized Analysis

- Consider sequence $o_1, o_2, ..., o_n$ of n operations (typically performed on some data structure D)
- t_i : execution time of operation o_i
- $T := t_1 + t_2 + \cdots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
 - → average execution time per operation might be small in the worst case, even if single operations can be expensive

Example: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation	Counter Value	Cost
	00000	
1	0000 1	1
2	000 10	2
3	0001 <mark>1</mark>	1
4	00 100	3
5	0010 <mark>1</mark>	1
6	001 10	2
7	0011 <mark>1</mark>	1
8	0 1000	4
9	0100 <mark>1</mark>	1
10	010 10	2
11	0101 1	1
12	01 100	3
13	0110 <mark>1</mark>	1

Accounting Method

Op.	Counter	Cost	To Bank	From Bank	Net Cost	Credit
	00000					
1	00001	1				
2	00010	2				
3	00011	1				
4	00100	3				
5	00101	1				
6	00110	2				
7	00111	1				
8	01000	4				
9	01001	1				
10	01010	2				

Potential Function Method

- Often a more elegant way to do amortized analysis!
 - But, also more abstract...
- State of data structure / system: $S \in S$ (state space)

Potential function $\Phi: \mathcal{S} \to \mathbb{R}_{\geq 0}$

Operation i:

- $-t_i$: actual cost of operation i
- S_i : state after execution of operation i (S_0 : initial state)
- $-\Phi_i := \Phi(S_i)$: potential after exec. of operation i
- a_i : amortized cost of operation i:

$$a_i \coloneqq t_i + \Phi_i - \Phi_{i-1}$$

Potential Function Method

Operation *i*:

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

Overall cost:

$$T \coloneqq \sum_{i=1}^{n} t_i = \left(\sum_{i=1}^{n} a_i\right) + \Phi_0 - \Phi_n$$

Binary Counter: Potential Method

Potential function:

Φ: number of ones in current counter

- Clearly, $\Phi_0 = 0$ and $\Phi_i \ge 0$ for all $i \ge 0$
- Actual cost t_i :
 - 1 flip from 0 to 1
 - $t_i 1$ flips from 1 to 0
- Potential difference: $\Phi_i \Phi_{i-1} = 1 (t_i 1) = 2 t_i$
- Amortized cost: $a_i = t_i + \Phi_i \Phi_{i-1} = 2$

Back to Fibonacci Heaps

- Worst-case cost of a single delete-min or decrease-key operation is $\Omega(n)$
- Can we prove a small worst-case amortized cost for delete-min and decrease-key operations?

Remark:

- Data structure that allows operations $O_1, ..., O_k$
- We say that operation O_p has amortized cost a_p if for every execution the total time is

$$T \le \sum_{p=1}^k n_p \cdot a_p \,,$$

where n_p is the number of operations of type \mathcal{O}_p

Amortized Cost of Fibonacci Heaps

- Initialize-heap, is-empty, get-min, insert, and merge have worst-case cost O(1)
- Delete-min has amortized cost $O(\log n)$
- Decrease-key has amortized cost O(1)
- Starting with an empty heap, any sequence of n operations with at most n_d delete-min operations has total cost (time)

$$T = O(n + n_d \log n).$$

- We will now need the marks...
- Cost for Dijkstra: $O(|E| + |V| \log |V|)$

Simple (Lazy) Operations

Initialize-Heap *H*:

• H.rootlist := H.min := null

Merge heaps H and H':

- concatenate root lists
- update *H.min*

Insert element *e* into *H*:

- create new one-node tree containing $e \rightarrow H'$
- merge heaps H and H'

Get minimum element of *H*:

• return *H.min*

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node *v*:

• rank(v): degree of v

Tree T:

• rank(T): rank (degree) of root node of T

Heap H:

• rank(H): maximum degree of any node in H

Assumption (n: number of nodes in H):

$$rank(H) \leq D(n)$$

- for a known function D(n)

Operation Delete-Min

Delete the node with minimum key from *H* and return its element:

```
    m := H.min;
    if H.size > 0 then
    remove H.min from H.rootlist;
    add H.min.child (list) to H.rootlist
    H.Consolidate();
    // Repeatedly merge nodes with equal degree in the root list // until degrees of nodes in the root list are distinct. // Determine the element with minimum key
```

6. return m

Operation Decrease-Key

Decrease-Key(v, x): (decrease key of node v to new value x)

```
    if x ≥ v.key then return;
    v.key := x; update H.min;
    if v ∈ H.rootlist ∨ x ≥ v.parent.key then return
    repeat
    parent := v.parent;
    H.cut(v);
    v := parent;
    until ¬(v.mark) ∨ v ∈ H.rootlist;
    if v ∉ H.rootlist then v.mark := true;
```

Fibonacci Heaps: Marks

Cycle of a node:

1. Node v is removed from root list and linked to a node

v.mark = false

2. Child node u of v is cut and added to root list

v.mark = true

3. Second child of v is cut

node v is cut as well and moved to root list

The boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.

Actual Time of Operations

• Operations: initialize-heap, is-empty, insert, get-min, merge

```
actual time: O(1)
```

Normalize unit time such that

$$t_{init}, t_{is-empty}, t_{insert}, t_{get-min}, t_{merge} \leq 1$$

- Operation *delete-min*:
 - Actual time: O(length of H.rootlist + D(n))
 - Normalize unit time such that

$$t_{del-min} \le D(n) + \text{length of } H.rootlist$$

- Operation descrease-key:
 - Actual time: O(length of path to next unmarked ancestor)
 - Normalize unit time such that

 $t_{decr-key} \leq \text{length of path to next unmarked ancestor}$

Potential Function

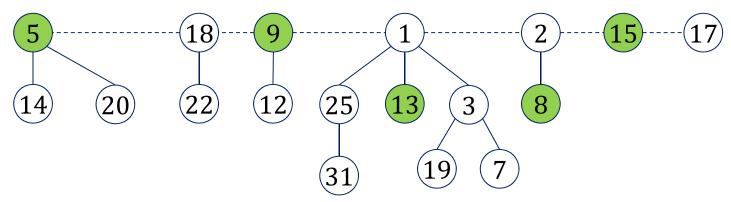
System state characterized by two parameters:

- R: number of trees (length of H.rootlist)
- M: number of marked nodes that are not in the root list

Potential function:

$$\Phi \coloneqq R + 2M$$

Example:



•
$$R = 7, M = 2 \rightarrow \Phi = 11$$

Amortized Times

Assume operation i is of type:

• initialize-heap:

- actual time: $t_i \leq 1$, potential: $\Phi_{i-1} = \Phi_i = 0$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

• is-empty, get-min:

- actual time: $t_i \le 1$, potential: $\Phi_i = \Phi_{i-1}$ (heap doesn't change)
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

• merge:

- Actual time: $t_i \leq 1$
- combined potential of both heaps: $\Phi_i = \Phi_{i-1}$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

Amortized Time of Insert

Assume that operation i is an *insert* operation:

• Actual time: $t_i \leq 1$

Potential function:

- M remains unchanged (no nodes are marked or unmarked, no marked nodes are moved to the root list)
- R grows by 1 (one element is added to the root list)

$$M_i = M_{i-1}, \qquad R_i = R_{i-1} + 1$$

 $\Phi_i = \Phi_{i-1} + 1$

Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \le 2$$

Amortized Time of Delete-Min

Assume that operation i is a *delete-min* operation:

Actual time: $t_i \leq D(n) + |H.rootlist|$

Potential function $\Phi = R + 2M$:

- R: changes from H. rootlist to at most D(n)
- M: (# of marked nodes that are not in the root list)
 - no new marks
 - if node v is moved away from root list, v. mark is set to false
 → value of M does not increase!

$$M_i \le M_{i-1}, \quad R_i \le R_{i-1} + D(n) - |H.rootlist|$$

 $\Phi_i \le \Phi_{i-1} + D(n) - |H.rootlist|$

Amortized Time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \le 2D(n)$$

Amortized Time of Decrease-Key

Assume that operation i is a decrease-key operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

- Assume, node u and nodes u_1, \dots, u_k are moved to root list
 - $-u_1, ..., u_k$ are marked and moved to root list, v. mark is set to true
- $\geq k$ marked nodes go to root list, ≤ 1 node gets newly marked
- R grows by $\leq k+1$, M grows by 1 and is decreased by $\geq k$

$$R_i \le R_{i-1} + k + 1, \qquad M_i \le M_{i-1} + 1 - k$$

 $\Phi_i \le \Phi_{i-1} + (k+1) - 2(k-1) = \Phi_{i-1} + 3 - k$

Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \le k+1+3-k=4$$

Complexities Fibonacci Heap

• Initialize-Heap: O(1)

• Is-Empty: **0**(1)

• Insert: O(1)

• Get-Min: **0**(1)

• Delete-Min: O(D(n)) \longrightarrow amortized

• Decrease-Key: O(1)

• Merge (heaps of size m and $n, m \le n$): O(1)

• How large can D(n) get?

Rank of Children

Lemma:

Consider a node v of rank k and let u_1, \dots, u_k be the children of v in the order in which they were linked to v. Then,

$$rank(u_i) \geq i - 2$$
.

Proof:

Fibonacci Numbers:

$$F_0 = 0$$
, $F_1 = 1$, $\forall k \ge 2$: $F_k = F_{k-1} + F_{k-2}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Proof:

• S_k : minimum size of the sub-tree of a node of rank k

$$S_0 = 1$$
, $S_1 = 2$, $\forall k \ge 2 : S_k \ge 2 + \sum_{i=0}^{k-2} S_i$

Claim about Fibonacci numbers:

$$\forall k \ge 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$

$$S_0 = 1, S_1 = 2, \forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i, \qquad F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$

• Claim of lemma: $S_k \ge F_{k+2}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Theorem:

The maximum rank of a node in a Fibonacci heap of size n is at most

$$D(n) = O(\log n).$$

Proof:

The Fibonacci numbers grow exponentially:

$$F_k = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right)$$

• For $D(n) \ge k$, we need $n \ge F_{k+2}$ nodes.

Summary: Binomial and Fibonacci Heaps

	Binomial Heap	Fibonacci Heap
initialize	O (1)	O (1)
insert	$O(\log n)$	O (1)
get-min	O (1)	O (1)
delete-min	$O(\log n)$	$O(\log n)$ *
decrease-key	$O(\log n)$	O (1) *
merge	$O(\log n)$	0 (1)
is-empty	0(1)	0 (1)

^{*} amortized time