)

Chapter 4
Data Structures

Algorithm Theory
WS 2014/15

Fabian Kuhn

UNI

FREIBURG

Amortized Analysis

Consider sequence 04, 05, ..., 0,, of n operations
(typically performed on some data structure D)

t;: execution time of operation o;
T :=tq +t, + -+ t,: total execution time

The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI
I

FREIBURG

Example: Binary Counter

UNI

FREIBURG

Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000
1 00001 1
2 00010 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1
Algorithm Theory, WS 2014/15 Fabian Kuhn

Accounting Method

UNI

FREIBURG

Op.

Counter

Cost

To Bank

From Bank

Net Cost

Credit

00000

00001

00010

00011

00100

00101

00110

00111

01000

O 00 N/ U B W N -

01001

[HEY
o

01010

N R D RPN R WL N R

Algorithm Theory, WS 2014/15

Fabian Kuhn

Potential Function Method

UNI

FREIBURG

e Often a more elegant way to do amortized analysis!

— But, also more abstract...

e State of data structure / system: S € § (state space)

Potential function ®: S —» R,

e QOperation i:
— t;: actual cost of operation i
— §;: state after execution of operation i (Sy: initial state)
— @; := P(S;): potential after exec. of operation i
— a;: amortized cost of operation i:

a; =t +®; —P;_4

Algorithm Theory, WS 2014/15 Fabian Kuhn

Potential Function Method

UNI

FREIBURG

Operation i:
actual cost: t; amortized cost: a; = t; + ®; — D;_4

n n
Pyt (Ya)+o0-o,

i

Overall cost:

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI

Binary Counter: Potential Method

FREIBURG

e Potential function:
®: number of ones in current counter

Clearly, ®y = 0and ®; = Oforalli =0

e Actual cost t;:
= 1 flipfromOto1l
= ¢; — 1flipsfrom1toO

Potential difference: ®; — ;1 =1—-(t; — 1) =2 — t;

Amortized cost: a; = t; + ; —D;_; = 2

Algorithm Theory, WS 2014/15 Fabian Kuhn 7

Back to Fibonacci Heaps

UNI
I

FREIBURG

 Worst-case cost of a single delete-min or decrease-key
operation is Q(n)

e Can we prove a small worst-case amortized cost for
delete-min and decrease-key operations?

Remark:
e Data structure that allows operations Oy, ..., Oy,

* We say that operation 0, has amortized cost a,, if for every
execution the total time is

k
TSan-ap,
p=1

where n,, is the number of operations of type 0,

Algorithm Theory, WS 2014/15 Fabian Kuhn 8

Amortized Cost of Fibonacci Heaps

UNI
FREIBURG

Initialize-heap, is-empty, get-min, insert, and merge
have worst-case cost O(1)

Delete-min has amortized cost O (logn)
Decrease-key has amortized cost O(1)

Starting with an empty heap, any sequence of n operations
with at most n; delete-min operations has total cost (time)

T =0n+nzlogn).

We will now need the marks...

Cost for Dijkstra: O(|E| + |V|log |V])

Algorithm Theory, WS 2014/15 Fabian Kuhn 9

UNI

Simple (Lazy) Operations

FREIBURG

Initialize-Heap H:
e H.rootlist := H.min := null

Merge heaps H and H':
e concatenate root lists
e update H.min

Insert element e into H:
* create new one-node tree containing e 2> H'
* merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2014/15 Fabian Kuhn 10

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:
e rank(v): degree of v

Tree T
e rank(T): rank (degree) of root node of T

Heap H:
e rank(H): maximum degree of any node in H

Assumption (n: number of nodes in H):
rank(H) < D(n)

— for a known function D (n)

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI
I

FREIBURG

Operation Delete-Min

|
FRE:BURG

UNI

Delete the node with minimum key from H and return its element:

m = H.min;
if H.size > 0 then

remove H. min from H.rootlist;

add H.min. child (list) to H.rootlist
H.Consolidate();

A S

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. returnm

Algorithm Theory, WS 2014/15 Fabian Kuhn 12

Operation Decrease-Key

|
FRE:BURG

UNI

Decrease-Key(v, x): (decrease key of node v to new value x)

if x = v. key then return;
v.key = x; update H. min,
if v € H.rootlist V x = v.parent. key then return
repeat
parent := v.parent;
H.cut(v);
v = parent;
until =(v.mark) Vv v € H.rootlist;

O 0 N O Uk WwhNhE

if v € H.rootlist then v.mark = true;

Algorithm Theory, WS 2014/15 Fabian Kuhn 13

Fibonacci Heaps: Marks

UNI

Cycle of a node:

1. Node v is removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark = true

3. Second child of v is cut
node v is cut as well and moved to root list

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

Algorithm Theory, WS 2014/15 Fabian Kuhn 14

FREIBURG

Actual Time of Operations

UNI

FREIBURG

e Operations: initialize-heap, is-empty, insert, get-min, merge
actual time: 0(1)

— Normalize unit time such that

Linit) tis—empty» Linserts tget—min» tmerge <1

e Operation delete-min:
— Actual time: O(Iength of H.rootlist + D(n))

— Normalize unit time such that
tgel—min < D(n) + length of H.rootlist

e QOperation descrease-key:

— Actual time: O (length of path to next unmarked ancestor)
— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory, WS 2014/15 Fabian Kuhn

15

Potential Function

UNI
I

FREIBURG

System state characterized by two parameters:
e R:number of trees (length of H.rootlist)
e M: number of marked nodes that are not in the root list

Potential function:

d =R+2M

Example:

e R=7,M=2 2> d=11

Algorithm Theory, WS 2014/15 Fabian Kuhn 16

Amortized Times

UNI
FREIBURG

Assume operation i is of type:

e initialize-heap:
— actual time: t; < 1, potential: ®;_; = ®; =0
— amortized time: a; = t; + ¢; —P;_1 <1

* is-empty, get-min:
— actual time: t; < 1, potential: ®; = ®;_, (heap doesn’t change)
— amortized time: a; = t; + ¢; —P;_1 <1

° merge:
— Actualtime: t; <1
— combined potential of both heaps: ®; = &;_4
— amortized time: a; = t; + ¢; —P;_1 <1

Algorithm Theory, WS 2014/15 Fabian Kuhn 17

Amortized Time of Insert

UNI
FREIBURG

Assume that operation i is an insert operation:
e Actualtime:t; <1

 Potential function:

— M remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)

Mi — Mi—l! Ri — Ri—l + 1
Cbi — cDi—l + 1

e Amortized time:

=t 4+ P — D <2

Algorithm Theory, WS 2014/15 Fabian Kuhn 18

Amortized Time of Delete-Min

UNI
FREIBURG

Assume that operation i is a delete-min operation:
Actual time: t; < D(n) + |H.rootlist|

Potential function ® = R + 2M:
* R:changes from H.rootlist to at most D(n)
e M: (# of marked nodes that are not in the root list)

— no new marks

— if node v is moved away from root list, v. mark is set to false
—> value of M does not increase!

M; < M;_4, R; < R;_{+ D(n)— |H.rootlist]
d; < P;,_; +D(n) — |H.rootlist|

Amortized Time:
a; = ti ~+ (l)i — q)i—l < ZD(n)

Algorithm Theory, WS 2014/15 Fabian Kuhn 19

UNI

Amortized Time of Decrease-Key

FREIBURG

Assume that operation i is a decrease-key operation at node u:
Actual time: t; < length of path to next unmarked ancestor v

Potential function ® = R + 2M:
e Assume, node u and nodes uy, ..., U, are moved to root list

— U4, ..., Uy are marked and moved to root list, v. mark is set to true
e > k marked nodes go to root list, < 1 node gets newly marked
e Rgrowsby < k+ 1, M grows by 1 and is decreased by > k

Ri<Ri_,+k+1, M, <M_,+1—k
O, < +k+1D)-2k—1D)=d;_,+3—k

Amortized time:
ai:ti‘l‘(bi—(bi_lgk‘l‘l‘l‘B—k:‘l‘

Algorithm Theory, WS 2014/15 Fabian Kuhn 20

Complexities Fibonacci Heap

Initialize-Heap: 0(1)

e Is-Empty: 0(1)
* Insert: 0o(1)
e Get-Min: 0(1)

* Delete-Min: 0(D(n)) _
‘> amortized

e Decrease-Key: 0(1)

e Merge (heaps of sizemandn, m < n): 0(1)

 How large can D(n) get?

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI
I

FREIBURG

UNI

Rank of Children

FREIBURG

Lemma:

Consider a node v of rank k and let uq, ..., u;be the children of v
in the order in which they were linked to v. Then,

rank(u;) > i — 2.

Proof:

Algorithm Theory, WS 2014/15 Fabian Kuhn 22

Size of Trees

UNI
I

FREIBURG

Fibonacci Numbers:
FO — O, F1

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with

rank k is at least Fj,».

Proof:

1,

Vk > Z:Fk — Fk—l + Fk—Z

e Si:minimum size of the sub-tree of a node of rank k

Algorithm Theory, WS 2014/15

Fabian Kuhn

23

Size of Trees

UNI
I

FREIBURG

S, =2, Vk22:5k22+25i

e (Claim about Fibonacci numbers:

Algorithm Theory, WS 2014/15

k
VkZO:Fk+2 :1+ZFL

Fabian Kuhn

1=0

k-2

1=0

24

Size of Trees

UNI

FREIBURG

k—2
So=1,5=2Vk=>2:5, =2+ ZSi,
i=0
e Claimoflemma: S, = Fj.»

Algorithm Theory, WS 2014/15 Fabian Kuhn

k
Ferz=1+) F,
=0

25

Size of Trees

UNI
FREIBURG

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k
is at least Fj, ».

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

D(n) = 0(logn).
Proof:
e The Fibonacci numbers grow exponentially:

1 (/1445 [1-v5)\"
e ((50) -(50)

e ForD(n) = k, we need n > Fj., nodes.

Algorithm Theory, WS 2014/15 Fabian Kuhn 26

Summary: Binomial and Fibonacci Heaps

UNI
I

FREIBURG

initialize
insert
get-min
delete-min
decrease-key
merge

is-empty

Algorithm Theory, WS 2014/15

Binomial Heap

0o(1)
O(log n)
0(1)
O(logn)
O(log n)
O(logn)
0(1)

Fabian Kuhn

Fibonacci Heap

0(1)
0(1)
0(1)
O(logn) *
o(1)*
0(1)
0(1)

k o o
amortized time

27

