

Chapter 4 Data Structures

Algorithm Theory WS 2014/15

Fabian Kuhn

Minimum Spanning Trees

Given: weighted graph

Goal: spanning tree with minimum total weight

Prim Algorithm:

1. Start with any node v (v is the initial component)

2. In each step:
Grow the current component by adding the minimum weight edge *e* connecting the current component with any other node

Kruskal Algorithm:

- 1. Start with an empty edge set
- 2. In each step: Add minimum weight edge e such that e does not close a cycle

Implementation of Prim Algorithm

Start at node s, very similar to Dijkstra's algorithm:

- 1. Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- 2. All nodes $s \geq v$ are unmarked

- 3. Get unmarked node u which minimizes d(u):
- 4. For all $e = \{u, v\} \in E$, $d(v) = \min\{d(v), w(e)\}$
- 5. mark node u

6. Until all nodes are marked

Implementation of Prim Algorithm

Implementation with Fibonacci heap:

• Analysis identical to the analysis of Dijkstra's algorithm:

O(n) insert and delete-min operations

O(m) decrease-key operations

• Running time: $O(m + n \log n)$

Kruskal Algorithm

- 1. Start with an empty edge set
- 2. In each step:
 Add minimum
 weight edge e
 such that e does
 not close a cycle

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

2. For each edge *e*:

if e does not close a cycle then

add e to the current solution

Union-Find Data Structure

Also known as **Disjoint-Set Data Structure**...

Manages partition of a set of elements

set of disjoint sets

Operations:

• make_set(x): create a new set that only contains element x

• find(x): return the set containing x

• union(x, y): merge the two sets containing x and y

Implementation of Kruskal Algorithm

1. Initialization:

For each node v: make_set(v)

- 2. Go through edges in order of increasing weights: Sort edges by edge weight
- 3. For each edge $e = \{u, v\}$:

```
if find(u) \neq find(v) then
```

add e to the current solution

union(u, v)

Managing Connected Components

- Union-find data structure can be used more generally to manage the connected components of a graph
 - ... if edges are added incrementally
- make_set(v) for every node v
- find(v) returns component containing v
- union(u, v) merges the components of u and v (when an edge is added between the components)
- Can also be used to manage biconnected components

Basic Implementation Properties

Representation of sets:

Every set S of the partition is identified with a representative,
 by one of its members x ∈ S

Operations:

- $make_set(x)$: x is the representative of the new set $\{x\}$
- find(x): return representative of set S_x containing x
- union(x, y): unites the sets S_x and S_y containing x and y and returns the new representative of $S_x \cup S_y$

Observations

Throughout the discussion of union-find:

- *n*: total number of make_set operations
- *m*: total number of operations (make_set, find, and union)

Clearly:

- $m \ge n$
- There are at most n-1 union operations

Remark:

- We assume that the n make_set operations are the first n operations
 - Does not really matter...

Linked List Implementation

Each set is implemented as a linked list:

representative: first list element (all nodes point to first elem.)
 in addition: pointer to first and last element

• sets: {1,5,8,12,43}, {7,9,15}; representatives: 5, 9

Linked List Implementation

$make_set(x)$:

Create list with one element:

time: O(1)

find(x):

Return first list element:

time: O(1)

Linked List Implementation

union(x, y):

• Append list of *y* to list of *x*:

Time: O(length of list of y)

Cost of Union (Linked List Implementation)

Total cost for n-1 union operations can be $\Theta(n^2)$:

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_{n-1}, x_n), union(x_{n-2}, x_{n-1}), ..., union(x_1, x_2)

Weighted-Union Heuristic

- In a bad execution, average cost per union can be $\Theta(n)$
- Problem: The longer list is always appended to the shorter one

Idea:

In each union operation, append shorter list to longer one!

Cost for union of sets S_x and S_y : $O(\min\{|S_x|, |S_y|\})$

Theorem: The overall cost of m operations of which at most n are make_set operations is $O(m + n \log n)$.

Weighted-Union Heuristic

Theorem: The overall cost of m operations of which at most n are make_set operations is $O(m + n \log n)$.

Proof: