)

Chapter 4
Data Structures

Algorithm Theory
WS 2014/15

Fabian Kuhn

UNI

FREIBURG



UNI

Minimum Spanning Trees

FREIBURG

Given: weighted graph
Goal: spanning tree with minimum total weight

Prim Algorithm:

1. Start with any node v (v is the initial component)

2. In each step:
Grow the current component by adding the minimum weight
edge e connecting the current component with any other node

Kruskal Algorithm:

1. Start with an empty edge set

2. In each step:
Add minimum weight edge e such that e does not close a cycle

Algorithm Theory, WS 2014/15 Fabian Kuhn 2



Implementation of Prim Algorithm

UNI
FREIBURG

Start at node s, very similar to Dijkstra’s algorithm:

1. Initialize d(s) = 0andd(v) = oo forallv # s
2. All nodes s = v are unmarked

3. Get unmarked node u which minimizes d(u):

4, Foralle = {u,v} € E, d(v) = min{d(v),w(e)}

5. mark node u

6. Until all nodes are marked

Algorithm Theory, WS 2014/15 Fabian Kuhn 3



Implementation of Prim Algorithm

UNI

FREIBURG

Implementation with Fibonacci heap:
* Analysis identical to the analysis of Dijkstra’s algorithm:

O (n) insert and delete-min operations

O (m) decrease-key operations

e Runningtime: O(m + nlogn)

Algorithm Theory, WS 2014/15 Fabian Kuhn



UNI

Kruskal Algorithm

FREIBURG

1 - . 1. Start with an
empty edge set

. (]
2. In each step:
14 Add minimum
weight edge e
2
7 ’8 . such that e does
16 31 not close a cycle

17 19
12

20

Algorithm Theory, WS 2014/15 Fabian Kuhn 5



Implementation of Kruskal Algorithm

UNI
I

FREIBURG

1. Go through edges in order of increasing weights

2. For each edge e:

if e does not close a cycle then

add e to the current solution

Algorithm Theory, WS 2014/15 Fabian Kuhn 6



Union-Find Data Structure

UNI
FREIBURG

Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements
e set of disjoint sets

Operations:

 make_set(x): create a new set that only contains element x

e find(x): return the set containing x

e union(x,y): merge the two sets containing x and y

Algorithm Theory, WS 2014/15 Fabian Kuhn 7



Implementation of Kruskal Algorithm

UNI
FREIBURG

1. [Initialization:
For each node v: make_set(v)

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. Foreach edge e = {u, v}:
if find(u) # find(v) then
add e to the current solution

union(u, v)

Algorithm Theory, WS 2014/15 Fabian Kuhn 8



UNI

Managing Connected Components

FREIBURG

 Union-find data structure can be used more generally to manage
the connected components of a graph

... if edges are added incrementally

 make_set(v) for every node v
e find(v) returns component containing v

e union(u,v) merges the components of u and v
(when an edge is added between the components)

e (Can also be used to manage biconnected components

Algorithm Theory, WS 2014/15 Fabian Kuhn 9



Basic Implementation Properties

UNI
FREIBURG

Representation of sets:

e Everyset S of the partition is identified with a representative,
by one of its members x € S

Operations:
 make_set(x): x is the representative of the new set {x}

e find(x): return representative of set S, containing x

 union(x,y): unites the sets S, and S,, containing x and y and
returns the new representative of 5, U S,,

Algorithm Theory, WS 2014/15 Fabian Kuhn 10



Observations

UNI
FREIBURG

Throughout the discussion of union-find:

e n:total number of make_set operations
 m: total number of operations (make_set, find, and union)

Clearly:
* mz=2n

 There are at most n — 1 union operations

Remark:

e We assume that the n make_set operations are the first n
operations

— Does not really matter...

Algorithm Theory, WS 2014/15 Fabian Kuhn 11



Linked List Implementation

UNI
I

FREIBURG

Each set is implemented as a linked list:

e representative: first list element (all nodes point to first elem.)
in addition: pointer to first and last element

v | | |
—> 5 —12— 8 —43—> 1

i)

v | |
—> 9 — 15— 7

i)

e sets: {1,5,8,12,43},{7,9,15}; representatives: 5,9

Algorithm Theory, WS 2014/15 Fabian Kuhn 12



Linked List Implementation

UNI
I

FREIBURG

make_set(x):
* (Create list with one element:

time: 0(1) — > x

find(x):

* Return first list element: ,h| | |

time: 0(1)

>y—>a—>x—>b

Algorithm Theory, WS 2014/15 Fabian Kuhn

13



UNI

Linked List Implementation

FREIBURG

union(x, y):
e Append list of y to list of x:

; | | | § | |
——a— b — x — C U——)d—)e—>y

4 @ ‘
; i | | | |

——>a—>b—>x—>c—>d—>e—>y

iy

Time: O(length of list of y)

Algorithm Theory, WS 2014/15 Fabian Kuhn 14



Cost of Union (Linked List Implementation)

UNI

FREIBURG

Total cost for n — 1 union operations can be 0(n?):

* make_set(x,), make_set(x,), ..., make_set(x,,),
union(x;,,_1, X, ), union(x,,_,, X,_1), ..., union(xy, x)

Algorithm Theory, WS 2014/15 Fabian Kuhn

15



Weighted-Union Heuristic

UNI

* In a bad execution, average cost per union can be 0(n)

 Problem: The longer list is always appended to the shorter one

Idea:
* |n each union operation, append shorter list to longer one!

Cost for union of sets S, and S: O(min{ISxI, |Sy|})

Theorem: The overall cost of m operations of which at most n are
make_set operations is O(m + nlogn).

Algorithm Theory, WS 2014/15 Fabian Kuhn 16

FREIBURG



Weighted-Union Heuristic

UNI
FREIBURG

Theorem: The overall cost of m operations of which at most n
are make_set operationsis O(m + nlogn).

Proof:

Algorithm Theory, WS 2014/15 Fabian Kuhn 17



