)

Chapter 4
Data Structures

Algorithm Theory
WS 2014/15

Fabian Kuhn

UNI

FREIBURG



Implementation of Kruskal Algorithm

UNI
I

FREIBURG

1. Go through edges in order of increasing weights

2. For each edge e:

if e does not close a cycle then

add e to the current solution

Algorithm Theory, WS 2014/15 Fabian Kuhn 2



Union-Find Data Structure

UNI
FREIBURG

Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements
e set of disjoint sets

Operations:

 make_set(x): create a new set that only contains element x

e find(x): return the set containing x

e union(x,y): merge the two sets containing x and y

Algorithm Theory, WS 2014/15 Fabian Kuhn 3



Implementation of Kruskal Algorithm

UNI
FREIBURG

1. [Initialization:
For each node v: make_set(v)

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. Foreach edge e = {u, v}:
if find(u) # find(v) then
add e to the current solution

union(u, v)

Algorithm Theory, WS 2014/15 Fabian Kuhn 4



Linked List Implementation

Each set is implemented as a linked list:

e representative: first list element (all nodes point to first elem.)
in addition: pointer to first and last element

v | | |
—> 5 —12— 8 —43—> 1

i)

v | |
—> 9 — 15— 7

i)

e sets: {1,5,8,12,43},{7,9,15}; representatives: 5,9

Algorithm Theory, WS 2014/15 Fabian Kuhn 5

UNI
I

FREIBURG



Weighted-Union Heuristic

UNI
I

FREIBURG

* In a bad execution, average cost per union can be 0(n)

 Problem: The longer list is always appended to the shorter one

Idea:
* |n each union operation, append shorter list to longer one!

Cost for union of sets S, and S: O(min{ISxI, |Sy|})

Theorem: The overall cost of m operations of which at most n are
make_set operations is O(m + nlogn).

Algorithm Theory, WS 2014/15 Fabian Kuhn 6



Disjoint-Set Forests

UNI

FREIBURG

2 @ @
OO
(b)

e Represent each set by a tree

e Representative of a set is the root of the tree

Algorithm Theory, WS 2014/15 Fabian Kuhn

@



Disjoint-Set Forests

UNI
I

FREIBURG

make_set(x): create new one-node tree @

find(x): follow parent point to root
(parent pointer to itself)

union(x, y): attach tree of x to tree of y

ALY

Algorithm Theory, WS 2014/15 Fabian Kuhn 8




Bad Sequence

UNI
I

FREIBURG

Bad sequence leads to tree(s) of depth ©(n)

* make_set(x,), make_set(x,), ..., make_set(x,,),
union(xy, x,), union(xy, x3), ..., union(x¢, x,,)

Algorithm Theory, WS 2014/15 Fabian Kuhn 9



UNI

Union-By-Size Heuristic

FREIBURG

Union of sets $; and S,:

* Root of trees representing S; and S,: r; and

e W.lo.g., assume that |S;| = |5, ]

e RootofS; US,: 1y (1, is attached to 7y as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case
cost of a find-operation is O(logn)

Proof:

Similar Strategy: union-by-rank
e rank: essentially the depth of a tree

Algorithm Theory, WS 2014/15 Fabian Kuhn 10



Union-Find Algorithms

UNI
FREIBURG

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:
 make_set: worst-case cost 0(1)

e find : worst-case cost O(1)

e union :amortized worst-case cost O (logn)

Disjoint-Set Forest with Union-By-Size Heuristic:
* make_set: worst-case cost O(1)

e find : worst-case cost O (logn)

e union :worst-case cost O(logn)

Can we make this faster?

Algorithm Theory, WS 2014/15 Fabian Kuhn

11



Path Compression During Find Operation

|
FRE:BURG

UNI

1. ifa # a.parent then

2. a.parent = find(a.parent)
3. return a.parent

Algorithm Theory, WS 2014/15 Fabian Kuhn 12



Complexity With Path Compression

When using only path compression (without union-by-rank):
m: total number of operations

e f of which are find-operations

 n of which are make_set-operations
- at most n — 1 are union-operations

Total cost: O (n +f- [log2+f/n nD =0(m+ f -logyym, n)

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI
I

FREIBURG



Union-By-Size and Path Compression

UNI

FREIBURG

Theorem:

Using the combined union-by-rank and path compression
heuristic, the running time of m disjoint-set (union-find)
operations on n elements (at most n make_set-operations) is

O(m - a(m,n)),

Where a(m,n) is the inverse of the Ackermann function.

Algorithm Theory, WS 2014/15 Fabian Kuhn

14



Ackermann Function and its Inverse

UNI

FREIBURG

Ackermann Function:

Fork,f > 1,

(2¢, ifk=1,¢>1
Ak, 0) ={ Ak —1,2), ifk>1¢=1
A(k—1,A(k,¢t-1)), ifk>1¢>1

Inverse of Ackermann Function:

a(m,n) = min{k > 1| A(k,|"/5]) > log, n}

Algorithm Theory, WS 2014/15 Fabian Kuhn

15



Inverse of Ackermann Function

UNI
I

FREIBURG

a(m,n) = min{k = 1| A(k, ["*/n]) > log, n}
m=>n= Ak, |™/n]) = A(k,1) = a(m,n) < min{k > 1|A(k, 1) > logn}

A(L,0) =2¢ Ak, 1) = Ak —1,2),
A(k,£) = A(k — 1,A(k, ¢ — 1))

A(21) =A(1,2) =4
ABB1D =A(22) =A(1, A1) = 2*
A(4,1) =A(3B2) = A(2,AB1)) = A(2,2%)
= A(1,A@22% — 1)) = 22" Jerrimes
AGD = ..

Algorithm Theory, WS 2014/15 Fabian Kuhn 16



