

Chapter 4 Data Structures

Algorithm Theory WS 2014/15

Fabian Kuhn

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

2. For each edge *e*:

if e does not close a cycle then

add e to the current solution

Union-Find Data Structure

Also known as **Disjoint-Set Data Structure**...

Manages partition of a set of elements

set of disjoint sets

Operations:

• make_set(x): create a new set that only contains element x

• find(x): return the set containing x

• union(x, y): merge the two sets containing x and y

Implementation of Kruskal Algorithm

1. Initialization:

For each node v: make_set(v)

- 2. Go through edges in order of increasing weights: Sort edges by edge weight
- 3. For each edge $e = \{u, v\}$:

```
if find(u) \neq find(v) then
```

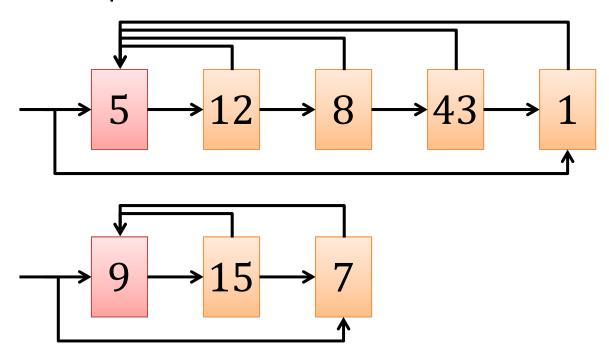
add e to the current solution

union(u, v)

Linked List Implementation

Each set is implemented as a linked list:

representative: first list element (all nodes point to first elem.)
 in addition: pointer to first and last element



• sets: {1,5,8,12,43}, {7,9,15}; representatives: 5, 9

Weighted-Union Heuristic

- In a bad execution, average cost per union can be $\Theta(n)$
- Problem: The longer list is always appended to the shorter one

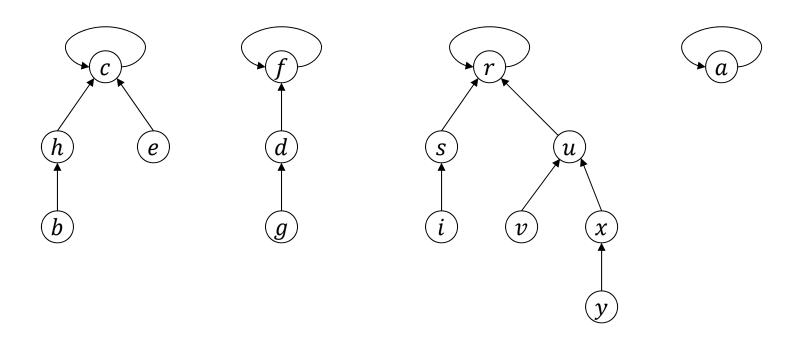
Idea:

In each union operation, append shorter list to longer one!

Cost for union of sets S_x and S_y : $O(\min\{|S_x|, |S_y|\})$

Theorem: The overall cost of m operations of which at most n are make_set operations is $O(m + n \log n)$.

Disjoint-Set Forests

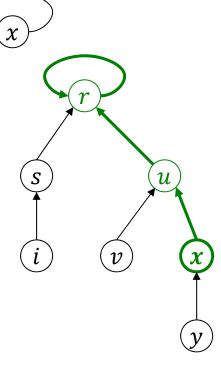


- Represent each set by a tree
- Representative of a set is the root of the tree

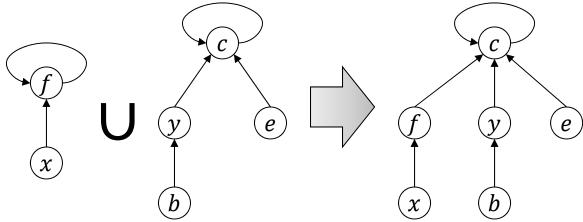
Disjoint-Set Forests

make_set(x): create new one-node tree

find(x): follow parent point to root
 (parent pointer to itself)



union(x, y): attach tree of x to tree of y



Algorithm Theory, WS 2014/15

Fabian Kuhn

Bad Sequence

Bad sequence leads to tree(s) of depth $\Theta(n)$

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_1, x_2), union(x_1, x_3), ..., union(x_1, x_n)

Union-By-Size Heuristic

Union of sets S_1 and S_2 :

- Root of trees representing S_1 and S_2 : r_1 and r_2
- W.I.o.g., assume that $|S_1| \ge |S_2|$
- Root of $S_1 \cup S_2$: r_1 (r_2 is attached to r_1 as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case cost of a find-operation is $O(\log n)$

Proof:

Similar Strategy: union-by-rank

rank: essentially the depth of a tree

Union-Find Algorithms

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

• make_set: worst-case cost O(1)

• find : worst-case cost O(1)

• union : amortized worst-case cost $O(\log n)$

Disjoint-Set Forest with Union-By-Size Heuristic:

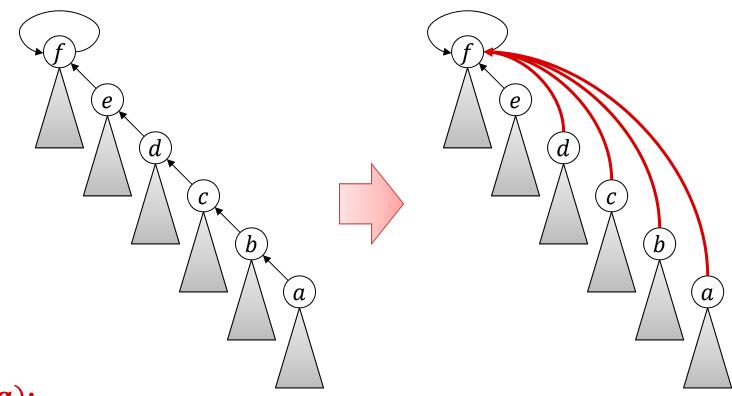
• make_set: worst-case cost O(1)

• find : worst-case cost $O(\log n)$

• union : worst-case cost $O(\log n)$

Can we make this faster?

Path Compression During Find Operation



find(a):

- 1. if $a \neq a$. parent then
- 2. a.parent = find(a.parent)
- 3. **return** *a.parent*

Complexity With Path Compression

When using only path compression (without union-by-rank):

m: total number of operations

- *f* of which are find-operations
- n of which are make_set-operations
 - \rightarrow at most n-1 are union-operations

Total cost:
$$O\left(n + f \cdot \left\lceil \log_{2+f/n} n \right\rceil \right) = O\left(m + f \cdot \log_{2+m/n} n\right)$$

Union-By-Size and Path Compression

Theorem:

Using the combined union-by-rank and path compression heuristic, the running time of m disjoint-set (union-find) operations on n elements (at most n make_set-operations) is

$$\Theta(m \cdot \alpha(m,n)),$$

Where $\alpha(m, n)$ is the inverse of the Ackermann function.

Ackermann Function and its Inverse

Ackermann Function:

$$\text{For } k,\ell \geq 1, \\ A(k,\ell) \coloneqq \begin{cases} 2^\ell, & \text{if } k=1,\ell \geq 1 \\ A(k-1,2), & \text{if } k>1,\ell = 1 \\ A(k-1,A(k,\ell-1)), & \text{if } k>1,\ell > 1 \end{cases}$$

Inverse of Ackermann Function:

$$\alpha(m,n) := \min\{k \geq 1 \mid A(k,\lfloor m/n \rfloor) > \log_2 n\}$$

Inverse of Ackermann Function

- $\alpha(m,n) \coloneqq \min\{k \ge 1 \mid A(k,\lfloor^m/n\rfloor) > \log_2 n\}$ $m \ge n \Rightarrow A(k,\lfloor^m/n\rfloor) \ge A(k,1) \Rightarrow \alpha(m,n) \le \min\{k \ge 1 \mid A(k,1) > \log n\}$
- $A(1,\ell) = 2^{\ell}$, A(k,1) = A(k-1,2), $A(k,\ell) = A(k-1,A(k,\ell-1))$
- A(2,1) = A(1,2) = 4
- $A(3,1) = A(2,2) = A(1,A(2,1)) = 2^4$
- $A(4,1) = A(3,2) = A(2,A(3,1)) = A(2,2^4)$ = $A(1,A(2,2^4-1)) = 2^{2^{2^{\cdot \cdot \cdot 2}}} c + 1 \text{ times}$
- A(5,1) = ...