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Graphs
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Extremely important concept in computer science

Graph ¢ = (V,E)
e V:node (or vertex) set
e E CV?: edge set
— Simple graph: no self-loops, no multiple edges
— Undirected graph: we often think of edges as sets of size 2 (e.g., {u, v})

— Directed graph: edges are sometimes also called arcs
— Weighted graph: (positive) weight on edges (or nodes)

e (simple) path: sequence v, ..., v, of nodes such that
(v;,v;41) € Eforalli € {0, ...,k — 1}

Many real-world problems can be formulated as optimization
problems on graphs
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Graph Optimization: Examples
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Minimum spanning tree (MST):
e Compute min. weight spanning tree of a weighted undir. Graph

Shortest paths:
e Compute (length) of shortest paths (single source, all pairs, ...)

Traveling salesperson (TSP):
e Compute shortest TSP path/tour in weighted graph

Vertex coloring:
e Color the nodes such that neighbors get different colors

e Goal: minimize the number of colors

Maximum matching:
e Matching: set of pair-wise non-adjacent edges

e Goal: maximize the size of the matching
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Network Flow
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Flow Network:

 Directed graph G = (V,E),E € V?

e Each (directed) edge e has a capacity c, = 0
— Amount of flow (traffic) that the edge can carry

e Asingle source node s € V and a single sink nodet € IV

Flow: (informally)
e Traffic from s to t such that each edge carries at most its capacity

Examples:
 Highway system: edges are highways, flow is the traffic

e Computer network: edges are network links that can carry
packets, nodes are switches

e Fluid network: edges are pipes that carry liquid
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Example: Flow Network
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Network Flow: Definition
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Flow: function f: E — R,
* f(e)isthe amount of flow carried by edge e

Capacity Constraints:
e Foreachedgee €E, f(e) <c,

Flow Conservation:
e Foreachnodev eV \ {s,t},

Y fE@= ) f@

e intov e out of v
Flow Value:
fl= ) flew)= > f(@0)
e out of s eintot
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Notation
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We define:
frw= ) f, U= Y fE@

eintov e out of v

ForasetS C V.

Fre)= ) f@),  fUS) = Y @)

e into S e out of S

Flow conservation: Vv € V \ {s,t}: f " (v) = f°"(v)
Flow value: || = f°Ut(s) = fI"(t)

For simplicity: Assume that all capacities are positive integers
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The Maximum-Flow Problem
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Maximum Flow:

Given a flow network, find a flow of maximum possible value

e C(Classical graph optimization problem
 Many applications (also beyond the obvious ones)

 Requires new algorithmic techniques
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Maximum Flow: Greedy?

Does greedy work?

A natural greedy algorithm:

 Aslong as possible, find an s-t-path with free capacity and
add as much flow as possible to the path
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Improving the Greedy Solution

UNI
I

FREIBURG

e Try to push 10 units of flow on edge (s, v)
e Too much incoming flow at v: reduce flow on edge (u, v)
e Add that flow on edge (u,t)
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Residual Graph
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Given a flow network G = (V, E) with capacities ¢, (for e € E)

For a flow f on G, define directed graph G = (Vf, Ef) as follows:
* NodesetVy =V
* Foreachedgee = (u,v) in E, there are two edges in E:
— forward edge e = (u, v) with residual capacity c, — f(e)
— backward edge e’ = (v, u) with residual capacity f(e)

Algorithm Theory, WS 2014/15 Fabian Kuhn 11



UNI

Residual Graph: Example
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Residual Graph: Example
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Flow f
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Residual Graph: Example
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Residual Graph G
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Augmenting Path

UNI

FREIBURG

Residual Graph G
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Augmenting Path
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Augmenting Path
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Augmenting Path

New Flow

@z

15

B i
10 -10
15
e

5+ 10 y

Algorithm Theory, WS 2014/15 Fabian Kuhn 17



Augmenting Path
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Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the
augmenting path P

Augment flow f to get flow f':
e For every forward edge (u,v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)
e For every backward edge (u,v) on P:

f'((v,u)) == f((v,u)) — bottleneck(P, f)
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Augmented Flow
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Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow [’ is legal and its value is
If'| = |f| + bottleneck(P, f).

Proof:

Algorithm Theory, WS 2014/15 Fabian Kuhn 19



Augmented Flow

UNI

FREIBURG

Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow [’ is legal and its value is
If'| = |f| + bottleneck(P, f).

Proof:

Algorithm Theory, WS 2014/15 Fabian Kuhn 20



