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Circulations with Demands
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Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

e The circulation problem is a feasibility rather than a maximization
problem
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Circulations with Demands: Formally
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Given: Directed network G = (V/, E) with
e Edge capacitiesc, > Oforalle € E

e Nodedemandsd, € RforallveVl

— d, > 0: node needs flow and therefore is a sink
— d, < 0:node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
e Capacity Conditions:Ve € E: 0 < f(e) <c,
e Demand Conditions: Vv € V: fi%(v) — foUuv) =d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.
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Example
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Condition on Demands
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Claim: If there exists a feasible circulation with demands d,, for

v € V, then
Zdv — 0.

vev
Proof:

* Ypdy = Zv(fin(v) - fOUt(v))

 f(e) of each edge e appears twice in the above sum with
different signs = overall sum is 0

Total supply = total demand:

Define D = z d, = z -d,

v:d,>0 v:d,,<0
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Reduction to Maximum Flow
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e Add “super-source” s* and “super-sink” t* to network

s” supplies t* siphons
sources flow out
with flow of sinks
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Example
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Formally...

Reduction: Get graph G’ from graph as follows
e Nodesetof G'isV U {s*, t*}

e Edge setis E and edges
— (s%,v) forall v with d,, < 0, capacity of edge is d,,
— (v, t*) for all v with d,, > 0, capacity of edge is d,,

Observations:

e Capacity of min s*-t* cut is at most D (e.g., the cut (s*,V U {t*})

e Afeasible circulation on G can be turned into a feasible flow of
value D of G’ by saturating all (s*,v) and (v, t*) edges.

e Any flow of G’ of value D induces a feasible circulation on G

— (s*,v) and (v, t*) edges are saturated
— By removing these edges, we get exactly the demand constraints
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Circulation with Demands
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Theorem: There is a feasible circulation with demands d,, v € V
on graph G if and only if there is a flow of value D on G'.

e |f all capacities and demands are integers, there is an integer
circulation

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands
d,, v € V if and only if for all cuts (4, B),

z d, < c(A,B).
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Circulation: Demands and Lower Bounds _
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Given: Directed network G = (V/, E) with
e Edge capacities ¢, > 0 and lower bounds 0 < ¥, < c, fore € E

e Nodedemandsd, € RforallveVl

— d, > 0: node needs flow and therefore is a sink
— d, < 0:node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
e Capacity Conditions:Ve € E: £, < f(e) < c,
« Demand Conditions: Yv € V: fi%(v) — fOUu(v) =d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.
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Solution Idea

Define initial circulation f(e) = 2,
Satisfies capacity constraints: Ve € E: ¢, < f,(e) < c,

Define

L= ) = @) = Y te— Y

e intov e out of v

If L,, = d,,, demand condition is satisfied at v by f,, otherwise,
we need to superimpose another circulation f; such that

dy = fi"(0) = [P W) = dy ~ Ly
Remaining capacity of edge e: ¢, :=c, — ¥,

We get a circulation problem with new demands d,,, new
capacities c,, and no lower bounds
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Eliminating a Lower Bound: Example
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Lower bound of 2
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Reduce to Problem Without Lower Bounds
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Graph ¢ = (V,E):
e Capacity: Foreachedgee € E: ¥, < f(e) <c,
e Demand: For each node v € V: f(v) — f°U(v) = d,,

Model lower bounds with supplies & demands:

W—==C @

Flow: ¢,

Create Network G’ (without lower bounds):
* Foreachedgee€E:c, =c, — ¥,
* ForeachnodeveV:d, =d,— L,
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Circulation: Demands and Lower Bounds _:.

2
= T

Theorem: There is a feasible circulation in G (with lower bounds) if
and only if there is feasible circulation in G’ (without lower bounds).

e Given circulation f in G’, f(e) = f'(e) + ¢, is circulation in G
— The capacity constraints are satisfied because f'(e) < ¢, — ¥,
— Demand conditions:

fr@) = fUw = Y Gt fE) = Y (et ()

eintov e out of v

=L, +(d, —L,) =d,
e Given circulation fin G, f'(e) = f(e) — £, is circulation in G’
— The capacity constraints are satisfied because £, < f(e) < c,
— Demand conditions:

Fr@ -t = ) (F@-2)— ) ()t

e intov e out of v
— dv — L,
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Integrality
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Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:
e Graph G’ has only integral capacities and demands

 Thus, the flow network used in the reduction to solve
circulation with demands and no lower bounds has only
integral capacities

e The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

e |t also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.
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Matrix Rounding
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* Given: p X g matrix D = {d; ;} of real numbers
* rowisum:q; =),;d;;, columnjsum:b; =),;d,;;

* Goal: Round each d; ;, as well as a; and b; up or down to the

next integer so that the sum of rounded elements in each row
(column) equals the rounded row (column) sum

e Original application: publishing census data

Example:

3.14 | 6.80 | 7.30
9.60 | 2.40 | 0.70
3.60 | 1.20

original data possible rounding
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Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn’t work

original data

rounding to nearest integer feasible rounding
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Reduction to Circulation
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Matrix elements and row/column sums
give a feasible circulation that satisfies

all lower bound, capacity, and demand

constraints

columns:

all demands d,, = 0
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Matrix Rounding
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Theorem: For any matrix, there exists a feasible rounding.

Proof:

* The matrix entries d; ; and the row and column sums a; and b;
give a feasible circulation for the constructed network

e Every feasible circulation gives matrix entries with corresponding
row and column sums (follows from demand constraints)

 Because all demands, capacities, and flow lower bounds are
integral, there is an integral solution to the circulation problem

- gives a feasible rounding!
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