)

Chapter 5
Graph Algorithms

Algorithm Theory
WS 2014/15

Fabian Kuhn

UNI
!

FREIBURG

i
Dangdi3ydd
INN

Matching

Fabian Kuhn

Algorithm Theory, WS 2014/15

Gifts-Children Graph

UNI

FREIBURG

 Which child likes which gift can be represented by a graph

b J

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI

Matching

FREIBURG

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size */, (every node is matched)

Algorithm Theory, WS 2014/15 Fabian Kuhn 4

UNI
I

FREIBURG

Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set
can be partitioned into two parts V = I/; U V, such that for each

edge {u,v} € E,
Hu,v}nV;| =1.

 Thus, edges are only between the two parts

O

E
4 £

Algorithm Theory, WS 2014/15 Fabian Kuhn

|
IBURG

Santa’s Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

Clearly, every matching
is at most as big

o [')K H_)

If #children = #gifts,
there is a solution iff
there is a perfect matching

L 3
L .

L

Algorithm Theory, WS 2014/15 Fabian Kuhn

Reducing to Maximum Flow

UNI

FREIBURG

e Like edge-disjoint paths...

all capacities are 1

Algorithm Theory, WS 2014/15 Fabian Kuhn

Reducing to Maximum Flow

UNI
FREIBURG

Theorem: Every integer solution to the max flow problem on the
constructed graph induces a maximum bipartite matching of G.

Proof:

1. Aninteger flow f of value |f| induces a matching of size |f|
— Left nodes (gifts) have incoming capacity 1
— Right nodes (children) have outgoing capacity 1
— Left and right nodes are incident to < 1 edge e of G with f(e) =1

2. A matching of size k implies a flow f of value |f| = k
— For each edge {u, v} of the matching:

f(sw)=7f(wv)=Ff(wt)=1

— All other flow values are 0

Algorithm Theory, WS 2014/15 Fabian Kuhn 8

Running Time of Max. Bipartite Matching _

UNI
FREIBURG

Theorem: A maximum matching of a bipartite graph can be
computed in time O(m - n).

Algorithm Theory, WS 2014/15 Fabian Kuhn 9

Perfect Matching?

UNI
FREIBURG

e There can only be a perfect matching if both sides of the
partition have size /,.

e There is no perfect matching, iff there is an s-t cut of
size < "/, in the flow network.

Algorithm Theory, WS 2014/15 Fabian Kuhn 10

s-t Cuts

Partition (4, B) of node set suchthats € Aandt € B
e Ifv; € A:edge (v;,t)isincut (4,B)
 Ifu; € B:edge (s,u;)isincut (4, B)

e Otherwise (if u; € A, v; € B), all edges from u; to some
v; € B areincut (4,B)

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI
I

FREIBURG

Hall’s Marriage Theorem

|
FRE:BURG

UNI

Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U)| = U],
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching < some s-t cut has capacity < n/2
1. Assume thereis U’ for which [N(U")| < |U']:

U’ N(U’)

Algorithm Theory, WS 2014/15 Fabian Kuhn 12

Hall’s Marriage Theorem

UNI
FREIBURG

Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U)| = U],
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching < some s-t cut has capacity < n/2
2. Assume that there is a cut (4, B) of capacity < n/2

N n
NW)| <y + - g Ny
Z
=7 -~ -~
n
(5 O x+y+z<=0- 0
- 20~

0 -

Algorithm Theory, WS 2014/15 ‘ Fabian Kuhn ‘ 13

Hall’s Marriage Theorem

|
FRE:BURG

UNI

Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if
vU' € U:|INWU')| = |U'|,
where N(U") € V is the set of neighbors of nodes in U'.
Proof: No perfect matching & some s-t cut has capacity < n

2. Assume that thereis a cut (4, B) of capacity < n
') =
==—-—X
2

INU)| <y+z
n

+ty+z<—
Xt+y+tz<s

Algorithm Theory, WS 2014/15 Fabian Kuhn 14

UNI

What About General Graphs

FREIBURG

e Can we efficiently compute a maximum matching if G is not
bipartite?

e How good is a maximal matching?

— A matching that cannot be extended...

Vertex Cover: set S € V of nodes such that
vi{u,v} € E, fu,vins + Q.

<o

A vertex cover covers all edges by incident nodes

Algorithm Theory, WS 2014/15 Fabian Kuhn 15

Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: |[M| < |S]

Proof:
e Atleast one node of every edge {u,v} € Misin S
 Needs to be a different node for different edges from M

Algorithm Theory, WS 2014/15 Fabian Kuhn

UNI
I

FREIBURG

Vertex Cover vs Matching

UNI
I

FREIBURG

Consider a matching M and a vertex cover S

Claim: If M is maximal and S is minimum, |S| < 2|M|

Proof:

e M is maximal: for every edge {u, v} € E, either u or v (or both)
are matched

e Everyedge e € E is “covered” by at least one matching edge

 Thus, the set of the nodes of all matching edges gives a vertex
cover S of size |S| = 2|M|.

Algorithm Theory, WS 2014/15 Fabian Kuhn 17

UNI

Maximal Matching Approximation

FREIBURG

Theorem: For any maximal matching M and any maximum matching
M™, it holds that
M| > m
2

Proof:

Theorem: The set of all matched nodes of a maximal matching M is
a vertex cover of size at most twice the size of a min. vertex cover.

Algorithm Theory, WS 2014/15 Fabian Kuhn 18

Augmenting Paths

UNI
I

FREIBURG

Consider a matching M of agraph G = (V, E):
e Anodev € Viscalled free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in E \ M and edges in M alternatingly.

free nodes

e Matching M can be improved using an augmenting path by
switching the role of each edge along the path

Algorithm Theory, WS 2014/15 Fabian Kuhn 19

Augmenting Paths

UNI
I

FREIBURG

Theorem: A matching M of G = (V, E) is maximum if and only if
there is no augmenting path.

Proof:
e Consider non-max. matching M and max. matching M™ and define
F==M\M", F*:=M"\M

* Notethat FNF* =@ and |F| < |F7|
e Each node v € V isincident to at most one edge in both F and F~*
e F U F"induces even cycles and paths

O e e)

O e e e)

O e e e)

Algorithm Theory, WS 2014/15 Fabian Kuhn 20

Finding Augmenting Paths

UNI

FREIBURG

augmenting path

Algorithm Theory, WS 2014/15 Fabian Kuhn

free nodes

odd cycle

21

Blossoms

UNI
I

FREIBURG

* If we find an odd cycle...
free node () f

Graph G

Matching M
contract
blossom @\
.contracted blossom
(: —v

Graph G’

Y
wals

Matching M’ = M \ {e, e’}
is a matching of G'.

blossom
Algorithm Theory, WS 2014/15 Fabian Kuhn 22

UNI

Contracting Blossoms

FREIBURG

Lemma: Graph G has an augmenting path w.r.t. matching M iff G’
has an augmenting path w.r.t. matching M’

f f

Note: If stem has length 0O,
root v of blossom is free
and thus also the node v’
is free in G'.

Also: The matching M can be computed efficiently from M'.

Algorithm Theory, WS 2014/15 Fabian Kuhn 23

Edmond’s Blossom Algorithm

UNI
I

FREIBURG

Algorithm Sketch:
1. Build a tree for each free node

2. Starting from an explored node u at even distance from a free
node f in the tree of f, explore some unexplored edge {u, v}:

1. If visan unexplored node, v is matched to some neighbor w:
add w to the tree (w is now explored)

2. Ifvisexplored and in the same tree:
at odd distance from root - ignore and move on
at even distance from root = blossom found

3. Ifvisexplored and in another tree
at odd distance from root - ignore and move on
at even distance from root - augmenting path found

Algorithm Theory, WS 2014/15 Fabian Kuhn 24

Running Time

UNI

FREIBURG

Finding a Blossom: Repeat on smaller graph
Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time O (mn?).

Algorithm Theory, WS 2014/15 Fabian Kuhn

25

Matching Algorithms

UNI
FREIBURG

We have seen:
e O(mn) time alg. to compute a max. matching in bipartite graphs

. O(mnz) time alg. to compute a max. matching in general graphs

Better algorithms:

e Best known running time (bipartite and general gr.): O(m\/ﬁ)

Weighted matching:
 Edges have weight, find a matching of maximum total weight
e Bipartite graphs: flow reduction works in the same way

e General graphs: can also be solved in polynomial time
(Edmond’s algorithms is used as blackbox)

Algorithm Theory, WS 2014/15 Fabian Kuhn 26

Happy Holidays!

UNI
I

FREIBURG

e WellT A
WAS 2! P’

. He-HﬂACHTSFeR-m.

Algorithm Theory, WS 2014/15

Fabian Kuhn 27

