)

Chapter 6
Randomization

Algorithm Theory
WS 2013/14

Fabian Kuhn

UNI
l

FREIBURG

Randomization

UNI
I

FREIBURG

Randomized Algorithm:

e An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster

* Make algorithms simpler

* Make the analysis simpler

— Sometimes it’s also the opposite...

* Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization

— True in some computational models (e.g., for distributed algorithms)

— Not clear in the standard sequential model

Algorithm Theory, WS 2013/14 Fabian Kuhn 2

Contention Resolution

UNI
I

FREIBURG

A simple starter example (from distributed computing)
* Allows to introduce important concepts
e ...and to repeat some basic probability theory

Setting:

* n processes, 1 resource
wmpnlers — . .
e {L" (e.g., shared database, communication channel, ...)

Q K3

* There are time slots 1,2,3, ...

* In each time slot, only one client can access the resource
* All clients need to regularly access the resource

e Ifclienti tries to access the resource in slot t:

— Successful iff no other client tries to access the resource in slot t

Algorithm Theory, WS 2013/14 Fabian Kuhn 3

UNI

Algorithm

FREIBURG

Algorithm Ideas:
* Accessing the resource deterministically seems hard

— need to make sure that processes access the resource at different times
— or at least: often only a single process tries to access the resource

 Randomized solution:
In each time slot, each process tries with probabilit@

Analysis:

* How large should p be?

* How long does it take until some process i succeeds?
* How long does it take until all processes succeed?

* What are the probabilistic guarantees?

Algorithm Theory, WS 2013/14 Fabian Kuhn 4

Analysis (@) grovssss

UNI
I

FREIBURG

Events:

. c/l, ¢: process i tries to access the resource in time slot ¢

— Complementary event@ ﬂlﬂ t e quinf'

P(dqi,t) =P lp(dqi,t) =1-p

e §;.: processiissuccessful intimeslott
=t -

s = o ([

j#i

e Success probability (for process i):

(50 =2h T A,)= ptp”

)(L‘E‘.
1’ R

Algorithm Theory, WS 2013/14 Fabian Kuhn 5

. . . 1N . 1.4:: *
Fixingp %= Gi)=e L (lxd)=¢

UNI

FREIBURG

. P(Si,t) = p(1 — p)* 1 is maximized for /

1 1 1\" 1
pZE —]P)('Si,t)zg 1—E .

s u

* Asymptotics: /;/j |

1_ 1\" 1 1\
Forn = 2: - 1——)] <—-<|[1—-— <
i e n

n

* Success probability: (R‘Q"LQ

1 1
— < P(8;;) < -

e

en =__*

Algorithm Theory, WS 2013/14 Fabian Kuhn

Time Until First Success T(S;) =: A7 >

UNI
FREIBURG

‘Random Variable T';: Fiwe wnddl o I* sucas 4 proc. N

e T; =tifproc.i is successful in slot t for the first time

* Distribution: £

BT =R(85)e, TTed=ti-as, FT-0=(-9°g

e T;is geometrically distributed with parameter

1 1\"" ' 1
i:P(Si,t):E 1—5 >a.

* Expected time until first success:

1
E|T;] =a<21

_
Algorithm Theory, WS 2013/14 Fabian Kuhn 7

Time Until First Success

|
FREIBURG

UNI

Failure Event F;,: Process i does not succeed in timeslots 1, ..., ¢

- t

d-t,{ - ﬁ Sf’:k“-/{uinr,wﬁn\l @”“LK v
* The events §; ; are independent for different t >
ld‘
M

t
- t
P(F,.) = P ﬂ Sir 1_[P(S;,) = (1- IP(SLT))
r=1

* We know that IP’(SL-,T) > 1/ on: < -3
t x
1 (P 1Ak E R
P(Tlt) < (1 - 671) < e/en V‘}f‘/ 2

P —

x [
Algorithm Theory, WS 2013/14 Fabian Kuhn 8

Time Until First Success
/

UNI
FREIBURG

No success by time t: P(Ti,t) < e~ /en

QC Vtw: Qz,uf

* Generallyif t = ©(n): constant success probability

t = [C;Tl] P(Ti,t) < 1/6

t = en - ¢ _IM [P)(:Fi,t) < 1/ec-lnn =1

nC

e For success probability 1 —1/ ., we need t = O(nlogn).
p yl-—"/, (1 logn)

. V\%%ayﬁ“’(ﬁgfl succeedamttl;?:g{:oe{ggg%y)lI|ty in O(nlogn) time.

Algorithm Theory, WS 2013/14 Fabian Kuhn 9

Time Until All Processes Succeed

Event F;: some process has not succeeded by time t

- 8
(lP(AUB) =11h) +T(®)-F(}18) Fr = U Fit @
< TAH+TR) - i=1

Union Bound: For events &4, ..., &, /
k

k
P Uei <) P
[

i

Probability that not all processes have succeeded by time t:

P(F,) =P (U :Fl-,t> < z P(F;,) <n- e="/en.
i=1 i=1 T

—e——————————— |

.

Algorithm Theory, WS 2013/14 Fabian Kuhn < & 10

UNI
I

FREIBURG

Time Until All Processes Succeed

|
FREIBURG

UNI

Claim: With high probability, all processes succeed in the first
O(nlogn) time slots.

Proof: /

.+ P(F) <) gt/en
« Sett=[en:(c+1)Inn]

eu (c+0) Lo (A
- —~(CctN)mm
(“)((;—}D< ne o =Wne AN
'\‘V Vlc
\
nst

Remark: O(n log n) time slots are necessary for all processes to
succeed with reasonable probability

Algorithm Theory, WS 2013/14 Fabian Kuhn 11

Primality Testing

UNI
I

FREIBURG

Problem: Given a natural number n = 2, isn a prime number?

Simple primality test:

ﬁe o£ E'«{)ﬂ: O/,@de\)

1. ifniseven then

2 return (n = 2)

3. fori:=1to [\/ﬁ/ZJ do
4, if 21 + 1 divides n then
5
6

return false

return true /eyfwml}ql tw foom

* Running time: 0(1/n)

Algorithm Theory, WS 2013/14 Fabian Kuhn 12

A Better Algorithm? Z

UNI
I

FREIBURG

* How can we test primality efficiently?
* We need a little bit of basic number theory...

Square Roots of Unity: In Z;,, where p is a prime, the only
solutions of the equation x? = 1 (mod p) are x = +1 (mod p)

ZAs "= (jok)
AN X I'Z‘ ot ¢ b/ﬂz
\ ol = 0 (wed & G (x-0= ¢
(D (x-N) = © (weet p) R e of Horue Lo o boe O featpd

W&MT& ?iswlﬁfﬁu&

* If we find an x # +1 (mod n) such that x* = 1 (mod n), we
can conclude that;z’ is not a prime.

Algorithm Theory, WS 2013/14 Fabian Kuhn 13

Algorithm Idea

UNI

Claim: Let p > 2 be a prime number such that p — 1 = 2°d for an
integer s = 1 and some odd integer d = 3. Then for all a € Z,

2"d — .

a’ =1 (modp) or a = —1(mod p) forsome0 <r <s.

S e—— == -
Proof: el =l (wp < X e T+ =13 faed p)
 Fermat’s Little Theorem: Given a prime number p,
Va € Zy: aP~! =1 (modp) 2=l Csd p)
'_ _
?—‘ \ (wdﬂ —0 tl-:»d /
- 2.
x =
;_l (et ‘L | A
v P_::ﬁo(— Q =
2 o
f
g ven

Algorithm Theory, WS 2013/14 Fabian Kuhn 14

FREIBURG

Primality Test

|
FREIBURG

UNI

We have: If n is an odd prime andn — 1 = 2°d for an integers > 1
and an odd integer d = 3. Then foralla € {1, ...,n — 1},

a® =1 (modn) or a2 % = —1 (modn) forsome0 <r < s.

[Idea: If we findana € {1, ...,n — 1} such that

a® =1 (modn) and a?'¢ = —gmod n) forall0 <r <s,

—_—

we can conclude that n is not a prime.

—

* For every odd composite n > 2, at least 3/, of all possible a
satisfy the above condition -

* How can we find such a witness a efficiently?

e ——

Algorithm Theory, WS 2013/14 Fabian Kuhn 15

Miller-Rabin Primality Test

UNI

FREIBURG

* Given a natural numbern = 2, isn a prime number?

Miller-Rabin Test:
if n is even then return (n = 2)
compute s, d such thatn — 1 = 2°d;
choose a € {2, ...,n — 2} uniformly at random;

x = a® mod n;

1

2

3

4

5. ifx=1o0orx =n—1thenreturn true;
6. forr:=1tos—1do
7 x = x? mod n;

8 if x = 1 then return true;

9

return false;

Algorithm Theory, WS 2013/14 Fabian Kuhn

16

Analysis

UNI

FREIBURG

Theorem:
* Ifnis prime, the Miller-Rabin test always returns true.

* If nis composite, the Miller-Rabin test returns false with
probability at Ieasti/é.

Proof:
* Ifnis prime, the test works for all values of a
* If nis composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to
detect a composite number n with probability at most 47%.

Algorithm Theory, WS 2013/14 Fabian Kuhn

Running Time Sd-2

UNI

FREIBURG

Cost of Modular Arithmetic:
* Representation of a number x € Z,,: O(logn) bits

* Cost of adding two numbers x + y mod n:

O(ﬂ@d t«’)

* Cost of multiplying two numbers x - y mod n:
— It’s like multiplying degree O (logn) polynomials
> use FFT tocomputez =x - y boodocn - fo b5 &)
— Oy -byfogn bl »

Algorithm Theory, WS 2013/14 Fabian Kuhn

18

Running Time

UNI
I

FREIBURG

Cost of exponentiation x¢ mod n:

-_—

* Can be done using O(log d) multiplications

 Base-2 representationofd: d =);_ logd d; 2!

* Fast exponentiation:
1. y=1;

2. fori:=|logd]|to0do
3 y = y? mod n;
4, ifdl--=—1theny==y-xmodn;
5. returny; -
- -~

 Example:d = 22 211025192

B Gt o () = () = (L))

Algorithm Theory, WS 2013/14 Fabian Kuhn

19

Running Time

Theorem: One iteration of the Miller-Rabin test can be i/rpplemented
with running time 0(log® n - loglogn - logloglogn).= O(ﬂaﬁ)
— e e

if n is even then return (n = 2)
— S = O('Qoah,)
compute s, d suchthatn — 1 =2d;" 4. o¢n

choose a € {2, ...,n — 2} uniformly at random;

d

x:=a““modn;«— ——

if x =1orx =n — 1thenreturn true;
forr:=1tos—1do O(fy~) e
x := x* mod n; OM%Q" ﬁ’j/b“ ["//76)

if x = 1 then return true;

——

L 0 N O Uk wWwhR

return false;

Algorithm Theory, WS 2013/14 Fabian Kuhn 20

EIBURG

Deterministic Primality Test i

z
o

e |f a conjecture called the generalized Riemann hypothesis (GRH)
is true, the Miller-Rabin test can be turned into a polynomial-
time, deterministic algorithm

- Itis then sufficient to try all a € {1, ..., 0(log? n)}

* It has long not been proven whether a deterministic,
polynomial-time algorithm exist

* In 2002, Agrawal, Kayal, and Saxena gave an @(log12 n)-time
deterministic algorithm

— Has been improved to 0 (log® n)

* In practice, the randomized Miller-Rabin test is still the fastest
algorithm

Algorithm Theory, WS 2013/14 Fabian Kuhn 21

