

Chapter 6 Randomization

Algorithm Theory WS 2014/15

Fabian Kuhn

Randomization

Randomized Algorithm:

 An algorithm that uses (or can use) random coin flips in order to make decisions

We will see: randomization can be a powerful tool to

- Make algorithms faster
- Make algorithms simpler
- Make the analysis simpler
 - Sometimes it's also the opposite...
- Allow to solve problems (efficiently) that cannot be solved (efficiently) without randomization
 - True in some computational models (e.g., for distributed algorithms)
 - Not clear in the standard sequential model

Randomized Quicksort

Quicksort:

S v $S_{\ell} < v$ v $S_{r} > v$

```
\begin{array}{l} \textbf{function } \text{Quick } (S: \text{sequence}) \text{: sequence}; \\ \{ \text{returns the sorted sequence } S \} \\ \textbf{begin} \\ \textbf{if } \#S \leq 1 \text{ then } \textbf{return } S \\ \textbf{else } \{ \text{ choose pivot element } v \text{ in } S; \\ \text{partition } S \text{ into } S_{\ell} \text{ with elements } < v, \\ \text{and } S_r \text{ with elements } > v \\ \textbf{return } \boxed{ \text{Quick}(S_{\ell}) } \boxed{ v } \boxed{ \text{Quick}(S_r) } \end{array}
```

end;

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:

- Let's just count the number of comparisons
- In the partitioning step, all n-1 non-pivot elements have to be compared to the pivot
- Number of comparisons:

n-1 + #comparisons in recursive calls

• If rank of pivot is r:
recursive calls with r-1 and n-r elements

Random variables:

- C: total number of comparisons (for a given array of length n)
- R: rank of first pivot
- C_{ℓ} , C_r : number of comparisons for the 2 recursive calls

$$C = n - 1 + C_{\ell} + C_r$$

Expectation:

$$\mathbb{E}[C] = \mathbb{E}[n-1+C_{\ell}+C_r]$$

Linearity of Expectation:

$$\mathbb{E}[C] = n - 1 + \mathbb{E}[C_{\ell}] + \mathbb{E}[C_r]$$

Random variables:

- C: total number of comparisons (for a given array of length n)
- R: rank of first pivot
- C_{ℓ} , C_r : number of comparisons for the 2 recursive calls

$$\mathbb{E}[C] = n - 1 + \mathbb{E}[C_{\ell}] + \mathbb{E}[C_r]$$

Law of Total Expectation:

$$\mathbb{E}[C] = \sum_{\substack{r=1\\n}}^{n} \mathbb{P}(R=r) \cdot \mathbb{E}[C|R=r]$$

$$= \sum_{r=1}^{n} \mathbb{P}(R=r) \cdot (n-1+\mathbb{E}[C_{\ell}|R=r] + \mathbb{E}[C_{r}|R=r])$$

We have seen that:

$$\mathbb{E}[C] = \sum_{r=1}^{n} \mathbb{P}(R=r) \cdot (n-1+\mathbb{E}[C_{\ell}|R=r] + \mathbb{E}[C_{r}|R=r])$$

Define:

• T(n): expected number of comparisons when sorting n elements

$$\mathbb{E}[C] = T(n)$$

$$\mathbb{E}[C_{\ell}|R = r] = T(r - 1)$$

$$\mathbb{E}[C_r|R = r] = T(n - r)$$

Recursion:

$$T(n) = \sum_{r=1}^{n} \frac{1}{n} \cdot (n-1+T(r-1)+T(n-r))$$

$$T(0) = T(1) = 0$$

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

Proof:

$$T(n) = \sum_{r=1}^{n} \frac{1}{n} \cdot (n-1+T(r-1)+T(n-r)), \qquad T(1) = 0$$

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

Proof:

$$T(n) \le n - 1 + \frac{4}{n} \cdot \int_{1}^{n} x \ln x \, dx$$

$$\int x \ln x \, dx = \frac{x^2 \ln x}{2} - \frac{x^2}{4}$$