)

Chapter 6
Randomization

Algorithm Theory
WS 2014/15

Fabian Kuhn

UNI
!

FREIBURG

Randomized Quicksort

UNI
I

FREIBURG

Quicksort:

Sp<v % S, >v

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn S
else { choose pivot element v in S;
partition S into S, with elements < v,
and S, with elements > v
return | Quick(S,) |v |Quick(S;)

end;

Algorithm Theory, WS 2014/15 Fabian Kuhn

IBURG

Alternative Analysis

Arraytosort:[7,3,1,10,14,8,12,9,4,6,5,15,2,13,11]

Viewing quicksort run as a tree:

Algorithm Theory, WS 2014/15 Fabian Kuhn 3

Comparisons

UNI
I

FREIBURG

e Comparisons are only between pivot and non-pivot elements

 Every element can only be the pivot once:
— every 2 elements can only be compared once!

W.l.0.g., assume that the elements to sortare 1,2, ..., n

Elements i and j are compared if and only if eitheri orjis a
pivot before any element h:i < h < j is chosen as pivot
— i.e., iff i is an ancestor of j or j is an ancestor of i

[P(comparison betw.i and j) =j 11

Algorithm Theory, WS 2014/15 Fabian Kuhn 4

Counting Comparisons

UNI

FREIBURG

Random variable for every pair of elements (i, j):

1, if there is a comparison between i and j
Xij s .
0, otherwise

Number of comparisons: X

i<j
e Whatis E[X]?

Algorithm Theory, WS 2014/15 Fabian Kuhn

Randomized Quicksort Analysis

UNI
FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.
Proof:

e Linearity of expectation:
For all random variables X4, ..., X,; and all a4, ..., a,, € R,

E [Zn: a; X;| = Zn: a; E[X;].

Algorithm Theory, WS 2014/15 Fabian Kuhn

Randomized Quicksort Analysis

|
FRE:BURG

UNI

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n—-1n-— l+1

=2 Yy) b

i=1 j=i+1

Algorithm Theory, WS 2014/15 Fabian Kuhn 7

Types of Randomized Algorithms

UNI
FREIBURG

Las Vegas Algorithm:

e always a correct solution

* running time is a random variable

 Example: randomized quicksort, contention resolution
Monte Carlo Algorithm:

e probabilistic correctness guarantee (mostly correct)

e fixed (deterministic) running time

e Example: primality test

Algorithm Theory, WS 2014/15 Fabian Kuhn 8

Minimum Cut

UNI
I

FREIBURG

Reminder: Given a graph G = (V, E), a cut is a partition (4, B)
of VsuchthatV = AUB,ANB=Q0,A,B+0

Size of the cut (4, B): # of edges crossing the cut
 For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size 1(G))

Maximum-flow based algorithm:
e Fix s, compute min s-t-cut forallt # s

. O(m : A(G)) = 0(mn) per s-t cut
e Gives an O(mn/l(G)) = 0(mn?)-algorithm

Best-known deterministic algorithm: O (mn + nlogn)

Algorithm Theory, WS 2014/15 Fabian Kuhn

Edge Contractions

UNI
FREIBURG

* Inthe following, we consider multi-graphs that can have
multiple edges (but no self-loops)

ok not ok

Contracting edge {u, v}:

e Replace nodes u, v by new node w
e Forall edges {u,x}and {v, x}, add an edge {w, x}
e Remove self-loops created at node w

contract {u, v}

Algorithm Theory, WS 2014/15 Fabian Kuhn 10

UNI
I

FREIBURG

Properties of Edge Contractions

Nodes:
e After contracting {u, v}, the new node represents u and v

e After a series of contractions, each node represents a subset of
the original nodes

2 (1,2) (1,2)
3 (5(4,6)} 5 {3.(4,5,6)}
— —
. (3,4,5,6)
6 (4,5, 6)
Cuts:

e Assume in the contracted graph, w represents nodes S,, C V

e The edges of a node w in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut (S,,,V \ S,,)

Algorithm Theory, WS 2014/15 Fabian Kuhn 11

UNI

Randomized Contraction Algorithm

FREIBURG

Algorithm:

while there are > 2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0 (n?).

e We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 0(n?).
e There are n — 2 contractions, each can be done in time 0(n).

* You will show this in the exercises.
Algorithm Theory, WS 2014/15 Fabian Kuhn 12

Contractions and Cuts

UNI
FREIBURG

Lemma: If two original nodes u, v € V are merged into the same
node of the contracted graph, there is a path connecting u and v
in the original graph s.t. all edges on the path are contracted.

Proof:

e Contracting an edge {x, y} merges the node sets represented by
x and y and does not change any of the other node sets.

e The claim the follows by induction on the number of edge
contractions.

Algorithm Theory, WS 2014/15 Fabian Kuhn 13

Contractions and Cuts

UNI
I

FREIBURG

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

e All cutsin a (partially) contracted graph correspond to cuts of
the same size in the original graph G as follows:

— For a node u of the contracted graph, let S,, be the set of original nodes
that have been merged into u (the nodes that u represents)

— Consider a cut (4, B) of the contracted graph
— (A’,B") with

A= US”’ B := US,,

UEA VEB
is a cut of G.

— The edges crossing cut (4, B) are in one-to-one correspondence with the
edges crossing cut (4, B).

Algorithm Theory, WS 2014/15 Fabian Kuhn 14

Contraction and Cuts

UNI
I

FREIBURG

Lemma: The contraction algorithm outputs a cut (4, B) of the input
graph G if and only if it never contracts an edge crossing (4, B).

Proof:

1. If an edge crossing (A4, B) is contracted, a pair of nodes u € 4,
v € V is merged into the same node and the algorithm outputs
a cut different from (4, B).

2. Ifnoedge of (4, B) is contracted, notwonodesu € A, v € B
end up in the same contracted node because every path
connecting u and v in G contains some edge crossing (4, B)

In the end there are only 2 sets = outputis (4, B)

Algorithm Theory, WS 2014/15 Fabian Kuhn 15

Getting The Min Cut

|
FRE:BURG

UNI

Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k,
G: has at least kn/2 edges.

Proof:

e Min cut has size k = all nodes have degree > k
— A node v of degree < k gives a cut ({v},V \ {v}) of size < k

 Number of edgesm =1/, -3 deg(v)

Algorithm Theory, WS 2014/15 Fabian Kuhn 16

Getting The Min Cut

UNI
I

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

Proof:
e Consider a fixed min cut (4, B), assume (4, B) has size k

e The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

e Before contraction i, therearen + 1 — i nodes
2> andthus> (n+ 1 —i)k/2 edges

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i is at most

ko2
nm+1—-Dk n+1-i
2

Algorithm Theory, WS 2014/15 Fabian Kuhn 17

Getting The Min Cut

|
FRE:BURG

UNI

Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

Proof:

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i isat most 2/, ;_;.

e Event &;: edge contracted in step i is not crossing (A4, B)

Algorithm Theory, WS 2014/15 Fabian Kuhn 18

Getting The Min Cut

|
FRE:BURG

UNI

Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

Proof:

o P(Eiq|EL NN gi) > 1 — 2 _ n-—2-i

n—i n—i

* No edge crossing (4, B) contracted: event £ = N2 E;

Algorithm Theory, WS 2014/15 Fabian Kuhn 19

Randomized Min Cut Algorithm

UNI
FREIBURG

Theorem: If the contraction algorithm is repeated 0 (n?logn)
times, one of the O(n? logn) instances returns a min. cut w.h.p.

Proof:

e Probability to not get a minimum cutin c - (2) - In n iterations:

1 \¢()mn emn 1
(1 — T) <e = F
(2)

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

 Each instance can be implemented in O(n?) time.
(O(n) time per contraction)

Algorithm Theory, WS 2014/15 Fabian Kuhn 20

Can We Do Better?

UNI
FREIBURG

e Time O(n*logn) is not very spectacular, a simple max flow
based implementation has time 0 (n*).

However, we will see that the contraction algorithm is
nevertheless very interesting because:

1. The algorithm can be improved to beat every known
deterministic algorithm.

2. It allows to obtain strong statements about the distribution
of cuts in graphs.

Algorithm Theory, WS 2014/15 Fabian Kuhn 21

Better Randomized Algorithm

|
FRE:BURG

UNI

Recall:

Consider a fixed min cut (4, B), assume (4, B) has size k

The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

Throughout the algorithm, the edge connectivity is at least k
and therefore each node has degree = k

Before contraction i, there aren + 1 — i nodes and thus at
least (n + 1 — i)k /2 edges

If no edge crossing (A4, B) is contracted before, the probability
to contract an edge crossing (A, B) in step i is at most

ko2
m+1—-Dk n+1-i
2

Algorithm Theory, WS 2014/15 Fabian Kuhn 22

Improving the Contraction Algorithm

UNI

FREIBURG

e For a specific min cut (4, B), if (4, B) survives the first i
contractions,

[P(edge crossing (4, B) in contractioni + 1) <

n—i
 Observation: The probability only gets large for large i

e ldea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early

ones.

Algorithm Theory, WS 2014/15 Fabian Kuhn

23

Safe Contraction Phase

|
FRE:BURG

UNI

Lemma: A given min cut (4, B) of an n-node graph G survives the
firstn — ["/\/E + 1\ contractions, with probability > 1/,.

Proof:
e Event &;: cut (4, B) survives contraction i
e Probability that (4, B) survives the first n — t contractions:

Algorithm Theory, WS 2014/15 Fabian Kuhn 24

Better Randomized Algorithm

UNI
FREIBURG

Let’s simplify a bit:

e Pretend that n/\/f is an integer (for all n we will need it).

e Assume that a given min cut survives the first n — "/\/E
contractions with probability > 1/,.

contract(a, t):

e Starting with n-node graph G, perform n — t edge contractions
such that the new graph has t nodes.

mincut(G):
1. X, := mincut (contract(G,n/ﬁ));

2. X, := mincut (contract(G,n/\/E));

3. return min{X{,X,};
Algorithm Theory, WS 2014/15 Fabian Kuhn 25

Success Probability

UNI
FREIBURG

mincut(G):

1. X;:= mincut (contract(G,n/\/f));

2. X, = mincut (contract(G,n/\/E));

3. return min{X,, X,};

P(n): probability that the above algorithm returns a min cut when
applied to a graph with n nodes.

* Probability that X; is a min cut =

Recursion:

Algorithm Theory, WS 2014/15 Fabian Kuhn 26

Success Probability

|
FRE:BURG

UNI

Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least 1/log, n.

Proof (by induction on n):

n 1 n\’

Algorithm Theory, WS 2014/15 Fabian Kuhn 27

