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Minimum Cut
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Reminder: Given a graph G = (V, E), a cut is a partition (4, B)
of VsuchthatV = AUB,ANB=Q0,A,B+0

Size of the cut (4, B): # of edges crossing the cut
 For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size 1(G))

Maximum-flow based algorithm:
e Fix s, compute min s-t-cut forallt # s

. O(m : A(G)) = 0(mn) per s-t cut
e Gives an O(mn/l(G)) = 0(mn?)-algorithm

Best-known deterministic algorithm: O (mn + nlogn)
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Properties of Edge Contractions

Nodes:
e After contracting {u, v}, the new node represents u and v

e After a series of contractions, each node represents a subset of
the original nodes

2 (1,2) (1,2)
3 (5(4,6)} 5 {3.(4,5,6)}
— —
. (3,4,5,6)
6 (4,5, 6)
Cuts:

e Assume in the contracted graph, w represents nodes S,, C V

e The edges of a node w in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut (S,,,V \ S,,)
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Algorithm:

while there are > 2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0 (n?).

e We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 0(n?).
e There are n — 2 contractions, each can be done in time 0(n).

* You will show this in the exercises.
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Contraction and Cuts
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Lemma: The contraction algorithm outputs a cut (4, B) of the input
graph G if and only if it never contracts an edge crossing (4, B).

Proof:

1. If an edge crossing (A4, B) is contracted, a pair of nodes u € 4,
v € V is merged into the same node and the algorithm outputs
a cut different from (4, B).

2. Ifnoedge of (4, B) is contracted, notwonodesu € A, v € B
end up in the same contracted node because every path
connecting u and v in G contains some edge crossing (4, B)

In the end there are only 2 sets = outputis (4, B)
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Randomized Min Cut Algorithm
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Theorem: If the contraction algorithm is repeated 0 (n?logn)
times, one of the O(n? logn) instances returns a min. cut w.h.p.

Proof:

e Probability to not get a minimum cutin c - (2) - In n iterations:

1 \¢()mn emn 1
(1 — T) <e = F
(2)

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

 Each instance can be implemented in O(n?) time.
(O(n) time per contraction)
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Improving the Contraction Algorithm
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e For a specific min cut (4, B), if (4, B) survives the first i
contractions,

[P(edge crossing (4, B) in contractioni + 1) <

n—i
 Observation: The probability only gets large for large i

e ldea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early
ones.
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Lemma: A given min cut (4, B) of an n-node graph G survives the
firstn — ["/\/E + 1\ contractions, with probability > 1/,.

Proof:
e Event &;: cut (4, B) survives contraction i
e Probability that (4, B) survives the first n — t contractions:
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Better Randomized Algorithm
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Let’s simplify a bit:

e Pretend that n/\/f is an integer (for all n we will need it).

e Assume that a given min cut survives the first n — "/\/E
contractions with probability > 1/,.

contract(a, t):

e Starting with n-node graph G, perform n — t edge contractions
such that the new graph has t nodes.

mincut(G):
1. X, := mincut (contract(G,n/ﬁ));

2. X, := mincut (contract(G,n/\/E));

3. return min{X{,X,};
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Success Probability
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mincut(G):

1. X;:= mincut (contract(G,n/\/f));

2. X, = mincut (contract(G,n/\/E));

3. return min{X,, X,};

P(n): probability that the above algorithm returns a min cut when
applied to a graph with n nodes.

* Probability that X; is a min cut =

Recursion:
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Success Probability
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Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least 1/log, n.

Proof (by induction on n):

n 1 n\’
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Running Time
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1. X; := mincut (contract(G,n/\/f));

2. X, = mincut (contract(G,n/ﬁ));

3. return min{X,, X,};

Recursion:

e T(n):time to apply algorithm to n-node graphs

e Recursive calls: 2T ("/ﬁ)

* Number of contractions to get to "/ﬁ nodes: O(n)

T(n) = 2T<
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Theorem: The running time of the recursive, randomized min cut
algorithm is 0 (n®logn).

Proof:
e Can be shown in the usual way, by induction onn

Remark:

e The running time is only by an O (log n)-factor slower than
the basic contraction algorithm.

 The success probability is exponentially better!
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Number of Minimum Cuts
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e Given a graph G, how many minimum cuts can there be?

e Or alternatively: If G has edge connectivity k, how many ways
are there to remove k edges to disconnect G?

* Note that the total number of cuts is large.
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Number of Minimum Cuts
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Example: Ring with n nodes
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Minimum cut size: 2

Every two edges
induce a min cut

Number of edge pairs:
(2)
2
Are there graphs with
more min cuts?
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Number of Min Cuts
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Theorem: The number of minimum cuts of a graph is at most (2)

Proof:

e Assume there are s min cuts

e Fori€{l,..,s}, define event C;:

C; := {basic contraction algorithm returns min cut i}
 We know thatfori € {1, ...,s}: P(C;) = 1/(;)
e Events Cy, ..., C are disjoint:
S S
S
P (U Cl> — z P(Cl) — TN
SRS (2)

=
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