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e nitemsl],...,n, each item has weight w; > 0 and value v; > 0
e Knapsack (bag) of capacity W

e Goal: pack items into knapsack such that total weight is at most
W and total value is maximized:

maxz V;
iES
s.t. S€{1,...,n}and zwi <Ww
i€ES

e E.g.:jobs of length w; and value v;, server available for W time
units, try to execute a set of jobs that maximizes the total value
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Knapsack: Dynamic Programming Alg.
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We have shown:

e |[f all item weights w; are integers, using dynamic programming,
the knapsack problem can be solved in time O (nW)

e |f all values v; are integers, there is another dynamic progr.
algorithm that runs in time O (n?V), where V is the max. value.

Problems:
e |If W andV are large, the algorithms are not polynomial in n

e |f the values or weights are not integers, things are even worse
(and in general, the algorithms cannot even be applied at all)

Idea:

 Can we adapt one of the algorithms to at least compute an
approximate solution?
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Approximation Algorithm

e The algorithm has a parameter0 < e <1
e We assume that each item alone fits into the knapsack
 We define:

Zvinl 0
v |’ = max 7

1<i<n
* We solve the problem with integer values ¥; and weights w;
using dynamic programming in time O (n? - 17)

V = maxv;,, Vi:v; == [
1<isn

Theorem: The described algorithm runs in time 0(n3/¢).

Proof:

~ 2U;n 2Vn
V—maxvl—max[ } [ } [

1<isn 1<isn
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Approximation Algorithm
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Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at most 1 + «.

Proof:
e Define the set of all feasible solutions (subsets of [n])

S = {S c{1,..,n}: ZWi < W}

(€S
e v(S5): value of solution S w.r.t. values v, v,, ...
D(S): value of solution S w.r.t. values 74, D, ...

e LetS* be an optimal solution and S be the solution found by
the approximation algorithm.

e Weights are not changed at all, hence, S is a feasible solution
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Approximation Algorithm

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at most 1 + «.

Proof:
V(S = ) vi=max ) vi

e We have

IES* IES
5(8 =Zﬁ- _ maXZﬁ-
(5) , \ Ses ‘
IES SES

e Because every item fits into the knapsack, we have
Vi € {1,...,7’1}: v; < V< z Vj
jES*

gV A ~ 2vin
}:> v; < —-7;, andD; < —
2n

A 2vin
o Also: 7; :[ “/

+ 1

E 5174
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Approximation Algorithm
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Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at most 1 + «.

Proof:
* We have
eV R EV R EV 2v;in

e Therefore

v(S7) = Z = 2n

IES* i€eS
e Visalowerboundonv(S™):

V; _—+v(S)

(1—5)-v(5*)<v(§) O<£<1=>1—£> 1
- ’ - 2 1+¢

2

Algorithm Theory, WS 2014/15 Fabian Kuhn 7



Approximation Schemes

UNI
FREIBURG

For every parameter € > 0, the knapsack algorithm computes a
(1 + &)-approximation in time 0(n3/¢).

For every fixed €, we therefore get a polynomial time
approximation algorithm

An algorithm that computes an (1 + &)-approximation for every
& > 0 is called an approximation scheme.

If the running time is polynomial for every fixed &, we say that
the algorithm is a polynomial time approximation scheme (PTAS)

If the running time is also polynomial in 1/¢, the algorithm is a
fully polynomial time approximation scheme (FPTAS)

Thus, the described alg. is an FPTAS for the knapsack problem
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