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e Alarge variety of models, e.g.:

e PRAM (Parallel Random Access Machine)

— Classical model for parallel computations

e Shared Memory

— Classical model to study coordination / agreement problems,
distributed data structures, ...

* Message Passing (fully connected topology)

— Closely related to shared memory models

e Message Passing in Networks

— Decentralized computations, large parallel machines, comes in various
flavors...
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 Parallel version of RAM model
e p processors, shared random access memory

-

e Basic operations / access to shared memory cost 1
e Processor operations are synchronized

e Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, ...

Algorithm Theory, WS 2014/15 Fabian Kuhn 3



Other Parallel Models
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e Message passing: Fully connected network, local memory and
information exchange using messages

e Dynamic Multithreaded Algorithms: Simple parallel
programming paradigm
— E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)

FIB(n) v
: <2
1 if n<2 N
2 then return n ‘
3 x « spawn FIB(n — 1) ‘ ‘
4 y «— spawn FIB(n — 2) ‘l\‘
> sypec A T&.ORITHMS
6 return (r +y)
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Parallel Computations
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Sequential Computation: Parallel Computation:
e Sequence of operations e Directed Acyclic Graph (DAG)
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Parallel Computations
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T,: time to perform comp. with p procs

e T,:work (total # operations)

— Time when doing the
computation sequentially

e T,:critical path / span

— Time when parallelizing as
much as possible

e Lower Bounds:
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Parallel Computations
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T,: time to perform comp. with p procs

e Lower Bounds:

) 1
e Parallelism: —
Too

— maximum possible speed-up

e Linear Speed-up:
L~ o(p)
—_ p
)
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 How to assign operations to processors?

e Generally an online problem

— When scheduling some jobs/operations, we do not know how the
computation evolves over time

Greedy (offline) scheduling:

e Order jobs/operations as they would be scheduled optimally
with oo processors (topological sort of DAG)

— Easy to determine: With oo processors, one always schedules all
jobs/ops that can be scheduled

e Always schedule as many jobs/ops as possible
e Schedule jobs/ops in the same order as with co processors

— i.e., jobs that become available earlier have priority
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Brent’s Theorem

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Proof:
 Greedy scheduling achieves this...
e Hoperations scheduled with oo processors in round i: x;
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Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors p = 0(T, /Tw), it is
possible to achieve a linear speed-up.
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Back to the PRAM:
e Shared random access memory, synchronous computation steps
e The PRAM model comes in variants...

EREW (exclusive read, exclusive write):
e Concurrent memory access by multiple processors is not allowed

e |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
e Reading the same memory cell concurrently is OK

e Two concurrent writes to the same cell lead to unspecified
behavior

e This is the first variant that was considered (already in the 70s)
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The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
e Concurrent reads and writes are both OK

e Behavior of concurrent writes has to specified
— Weak CRCW: concurrent write only OK if all processors write 0
— Common-mode CRCW: all processors need to write the same value
— Arbitrary-winner CRCW: adversary picks one of the values
— Priority CRCW: value of processor with highest ID is written
— Strong CRCW: largest (or smallest) value is written

e The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong
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Some Relations Between PRAM Models _

Theorem: A parallel computation that can be performed in time ¢,
using p processors on a strong CRCW machine, can also be
performed in time O(t logp) using p processors on an EREW
machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

Theorem: A parallel computation that can be performed in time ¢,
using p probabilistic processors on a strong CRCW machine, can
also be performed in expected time O(t logp) using O(p/logp)
processors on an arbitrary-winner CRCW machine.

e The same simulation turns out more efficient in this case
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Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in
time O(t) using O(p?) processors on a weak CRCW machine

Proof:
e Strong: largest value wins, weak: only concurrently writing 0 is OK
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Computing the Maximum
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Observation: On a strong CRCW machine, the maximum of an
values can be computed in O (1) time using n processors

e Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of n integers
between 1 and 4/n can be computed in time 0(1) using O(n) proc.

Proof:
e We have \/n memory cells f;, .., f yzm for the possible values
e Initializeall f; =1
* Forthe n values x4, ..., X, processor j sets ij =0
— Since only zeroes are written, concurrent writes are OK
 Now, f; = 0 iff value i occurs at least once
e Strong CRCW machine: max. value in time 0(1) w. 0(y/n) proc.
e Weak CRCW machine: time 0(1) using O(n) proc. (prev. lemma)
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Computing the Maximum
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Theorem: If each value can be represented using O (log n) bits, the
maximum of n (integer) values can be computed in time O(1) using
O (n) processors on a weak CRCW machine.

Proof:

log, n

First look at highest order bits

The maximum value also has the maximum among those bits

There are only v/n possibilities for these bits

log, n

max. of highest order bits can be computed in O(1) time

log, n

For those with largest highest order bits, continue with

log, n

next block of bits, ...
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Prefix Sums
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e The following works for any associative binary operator @:

associativity: (a®b)Dc = aB(bDc)

All-Prefix-Sums: Given a sequence of n values aq, ..., a,, the all-
prefix-sums operation w.r.t. @ returns the sequence of prefix sums:

S1,S2,..,S, = aq,a1Da,, a;Da,Da,, ..., a;D - Da,

e Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: a4, ..., a3 = 3,1,7,0,4,1,6, 3
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Computing the Sum
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e Let'sfirstlookats, =a,®a,d - Da,

e Parallelize using a binary tree:
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