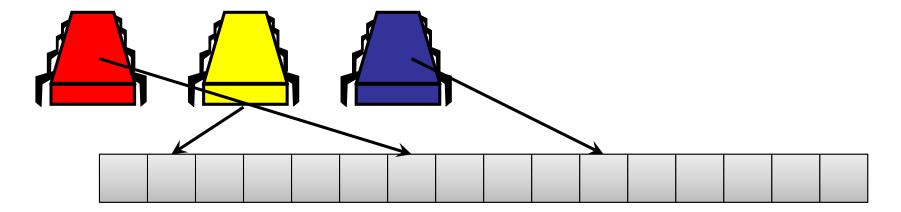


Chapter 9 Parallel Algorithms

Algorithm Theory WS 2014/15

Fabian Kuhn

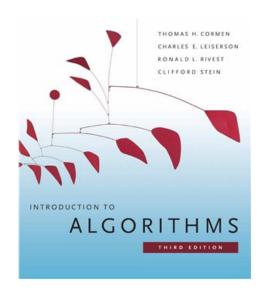
Models



- A large variety of models, e.g.:
- PRAM (Parallel Random Access Machine)
 - Classical model for parallel computations
- Shared Memory
 - Classical model to study coordination / agreement problems, distributed data structures, ...
- Message Passing (fully connected topology)
 - Closely related to shared memory models
- Message Passing in Networks
 - Decentralized computations, large parallel machines, comes in various flavors...

PRAM

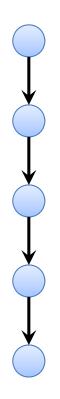
- Parallel version of RAM model
- p processors, shared random access memory


- Basic operations / access to shared memory cost 1
- Processor operations are synchronized
- Focus on parallelizing computation rather than cost of communication, locality, faults, asynchrony, ...

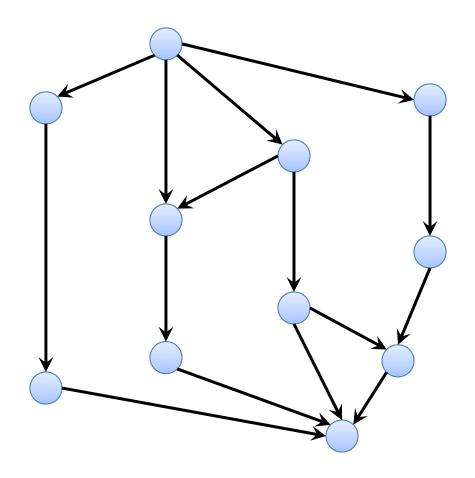
Other Parallel Models

- Message passing: Fully connected network, local memory and information exchange using messages
- Dynamic Multithreaded Algorithms: Simple parallel programming paradigm
 - E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)

```
FIB(n)
1 if n < 2
2 then return n
3 x \leftarrow \text{spawn FIB}(n-1)
4 y \leftarrow \text{spawn FIB}(n-2)
5 sync
6 return (x + y)
```



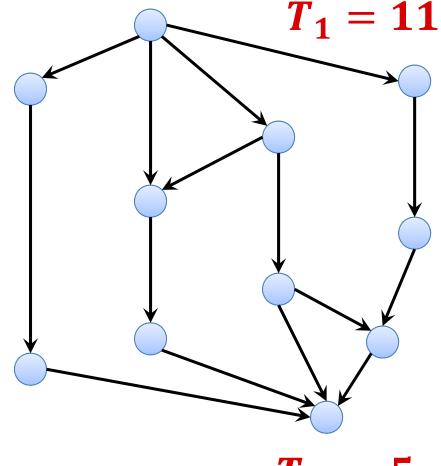
Parallel Computations


Sequential Computation:

Sequence of operations

Parallel Computation:

Directed Acyclic Graph (DAG)

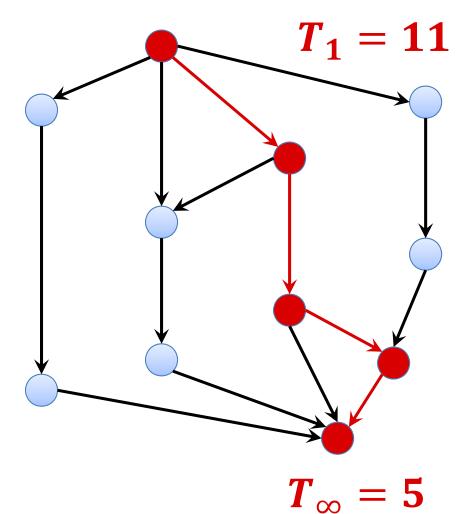

Parallel Computations

 T_p : time to perform comp. with p procs

- T_1 : work (total # operations)
 - Time when doing the computation sequentially
- T_{∞} : critical path / span
 - Time when parallelizing as much as possible
- Lower Bounds:

$$T_p \geq \frac{T_1}{p}, \qquad T_p \geq T_{\infty}$$

Parallel Computations


 T_p : time to perform comp. with p procs

• Lower Bounds:

$$T_p \ge \frac{T_1}{p}, \qquad T_p \ge T_\infty$$

- Parallelism: $\frac{T_1}{T_{\infty}}$
 - maximum possible speed-up
- Linear Speed-up:

$$\frac{T_1}{T_p} = \Theta(p)$$

Scheduling

- How to assign operations to processors?
- Generally an online problem
 - When scheduling some jobs/operations, we do not know how the computation evolves over time

Greedy (offline) scheduling:

- Order jobs/operations as they would be scheduled optimally with ∞ processors (topological sort of DAG)
 - Easy to determine: With ∞ processors, one always schedules all jobs/ops that can be scheduled
- Always schedule as many jobs/ops as possible
- Schedule jobs/ops in the same order as with ∞ processors
 - i.e., jobs that become available earlier have priority

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

$$T_p \leq \frac{T_1 - T_\infty}{p} + T_\infty.$$

- Greedy scheduling achieves this...
- #operations scheduled with ∞ processors in round $i: x_i$

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

$$T_p \leq \frac{T_1 - T_\infty}{p} + T_\infty.$$

- Greedy scheduling achieves this...
- #operations scheduled with ∞ processors in round $i: x_i$

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

$$T_p \leq \frac{T_1 - T_\infty}{p} + T_\infty.$$

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors $p = O(T_1/T_{\infty})$, it is possible to achieve a linear speed-up.

PRAM

Back to the PRAM:

- Shared random access memory, synchronous computation steps
- The PRAM model comes in variants...

EREW (exclusive read, exclusive write):

- Concurrent memory access by multiple processors is not allowed
- If two or more processors try to read from or write to the same memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):

- Reading the same memory cell concurrently is OK
- Two concurrent writes to the same cell lead to unspecified behavior
- This is the first variant that was considered (already in the 70s)

PRAM

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):

- Concurrent reads and writes are both OK
- Behavior of concurrent writes has to specified
 - Weak CRCW: concurrent write only OK if all processors write 0
 - Common-mode CRCW: all processors need to write the same value
 - Arbitrary-winner CRCW: adversary picks one of the values
 - Priority CRCW: value of processor with highest ID is written
 - Strong CRCW: largest (or smallest) value is written
- The given models are ordered in strength:

weak \leq common-mode \leq arbitrary-winner \leq priority \leq strong

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time t, using p processors on a strong CRCW machine, can also be performed in time $O(t \log p)$ using p processors on an EREW machine.

• Each (parallel) step on the CRCW machine can be simulated by $O(\log p)$ steps on an EREW machine

Theorem: A parallel computation that can be performed in time t, using p probabilistic processors on a strong CRCW machine, can also be performed in expected time $O(t \log p)$ using $O(p/\log p)$ processors on an arbitrary-winner CRCW machine.

The same simulation turns out more efficient in this case

Some Relations Between PRAM Models

Theorem: A computation that can be performed in time t, using p processors on a strong CRCW machine, can also be performed in time O(t) using $O(p^2)$ processors on a weak CRCW machine

Proof:

• Strong: largest value wins, weak: only concurrently writing 0 is OK

Some Relations Between PRAM Models

Theorem: A computation that can be performed in time t, using p processors on a strong CRCW machine, can also be performed in time O(t) using $O(p^2)$ processors on a weak CRCW machine

Proof:

• Strong: largest value wins, weak: only concurrently writing 0 is OK

Computing the Maximum

Observation: On a strong CRCW machine, the maximum of a n values can be computed in O(1) time using n processors

Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of n integers between 1 and \sqrt{n} can be computed in time O(1) using O(n) proc.

- We have \sqrt{n} memory cells f_1 , ..., $f_{\sqrt{n}}$ for the possible values
- Initialize all $f_i \coloneqq 1$
- For the n values x_1, \dots, x_n , processor j sets $f_{x_j} \coloneqq 0$
 - Since only zeroes are written, concurrent writes are OK
- Now, $f_i = 0$ iff value i occurs at least once
- Strong CRCW machine: max. value in time O(1) w. $O(\sqrt{n})$ proc.
- Weak CRCW machine: time O(1) using O(n) proc. (prev. lemma)

Computing the Maximum

Theorem: If each value can be represented using $O(\log n)$ bits, the maximum of n (integer) values can be computed in time O(1) using O(n) processors on a weak CRCW machine.

- First look at $\frac{\log_2 n}{2}$ highest order bits
- The maximum value also has the maximum among those bits
- There are only \sqrt{n} possibilities for these bits
- max. of $\frac{\log_2 n}{2}$ highest order bits can be computed in O(1) time
- For those with largest $\frac{\log_2 n}{2}$ highest order bits, continue with next block of $\frac{\log_2 n}{2}$ bits, ...

Prefix Sums

• The following works for any associative binary operator \oplus :

associativity:
$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$

All-Prefix-Sums: Given a sequence of n values $a_1, ..., a_n$, the all-prefix-sums operation w.r.t. \oplus returns the sequence of prefix sums:

$$s_1, s_2, \dots, s_n = a_1, a_1 \oplus a_2, a_1 \oplus a_2 \oplus a_3, \dots, a_1 \oplus \dots \oplus a_n$$

 Can be computed efficiently in parallel and turns out to be an important building block for designing parallel algorithms

Example: Operator: +, input: a_1 , ..., $a_8 = 3, 1, 7, 0, 4, 1, 6, 3$

$$s_1, ..., s_8 =$$

Computing the Sum

- Let's first look at $s_n = a_1 \oplus a_2 \oplus \cdots \oplus a_n$
- Parallelize using a binary tree: