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Exercise 1: Linear-Time Contention Resolution (8 points)

In class, we looked at the following simple contention resolution problem. There are n processes that
need to access a shared resource. Time is divided into time slots and in each time slot, a process i can
access the resource if and only if i is the only process trying to access the resource. We have shown
that if each process independently tries to access the resource with probability 1/n in each time slot,
in time O(n log n), all processes can access the resource at least once with high probability. The goal
of the exercise is to improve the algorithm and to get an O(n) time algorithm under the following
assumptions.

• As in the lecture, all the processes know n (the number of processes). In the algorithm of the
lecture, this is needed because the probability 1/n for accessing the resource depends on n. As
in the lecture, we also assume that all processes start together in the first time slot.

• If a process tries to access the resource in a time slot, the process afterwards knows whether the
access was successful or not. Also, we assume that a process only needs to succeed once, i.e.,
once a process has been successful, it stops trying to access the resource.

The goal of this exercise is to give and analyze a randomized algorithm which guarantees that for
some given constant c > 0 with probability at least 1− 1/nc, during the first O(n) time slots, each of
the n processes can access the resource at least once.

(a) (2 points) Let us first assume that in each time slot at most n/ lnn processes (among n processes)
need to access the resource. Adapt the algorithm of the lecture such that all processes succeed in
accessing the channel in O(n) rounds with probability at least 1− 1/nc+1.

(b) (1 point) Let us now assume that we are given an algorithm which guarantees that after T (n) time
slots, the number of processes which have not yet succeeded is at most n/ lnn with probability
at least 1 − 1/nc+1. What is the probability that all n processes succeed when combining this
algorithm with the adapted algorithm of the lecture from question (a). Define the appropriate
probability events to analyze this probability.

(c) (5 points) It remains to give an algorithm to which manages to get rid of all except n/ lnn of the
processes with probability at least 1 − 1/nc+1. Show that this can be achieved by an algorithm
which runs in multiple stages. You can use the following hint.

Hint: You can make use of the following fact. Consider a time interval consisting of at least e2k
time slots. During the time interval, there are at most k processes trying to access the resource
and in each time slot, each of the at most k processes tries to access the resource with probability
1/k. Then, with probability at least 1−e−k, at the end of the interval, at most k/2 of the processes
have not succeeded to access the resource.
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Exercise 2: Comparing Two Polynomials (4 points)

Assume that your are given two integer polynomials p and q of degree n. However, you are not given the
polynomials in an explicit form. Your only way to access the polynomials is to evaluate them at some
integer value x ∈ {1, . . . , 2n} (i.e., you can compute p(x) and q(x) for values x ∈ {1, . . . , 2n}). You
want to find out whether the two polynomials are identical. Give an efficient1 randomized algorithm
which tests whether the two polynomials are identical! If p = q, your algorithm should always return
“yes”, if p 6= q, your algorithm is allowed to err with constant probability. How can you get an
algorithm which gives the correct answer with probability at least 1 − ε for some (arbitrary) given
value ε > 0?

1The complexity of an algorithm is measured by the number of polynomial evaluations it needs to perform.
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