
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
M. Ahmadi, A. R. Molla, O. Saukh January 28, 2016

Algorithm Theory, Winter Term 2015/16

Problem Set 13

hand in (hard copy or electronically) by 10:15, Thursday February 04, 2016,
tutorial session will be on February 08, 2016

Exercise 1: LRU with Potential Function (5 points)

When studying online algorithm, the total (average) cost for serving a sequence of requests can often
be analyzed using amortized analysis. In the following, we will apply this to the paging problem and
you will analyze the competitive ratio of the LRU algorithm by using a potential function. Recall that
a potential function assigns a non-negative real value to each system state. In the context of online
algorithms, we think of running an optimal offline algorithm and an online algorithm side by side and
the system state is given by the combined states of both algorithms.
Consider the LRU paging algorithm, i.e., the online paging algorithm that always replaces the page
that has been used least recently. Let σ = (σ(1), σ(2), . . . , σ(m)) be an arbitrary request sequence
of pages. Let OPT be some optimal offline algorithm. You can assume that OPT evicts at most
one page in each step (e.g., think of OPT as the LFD algorithm). At any time t (i.e., after serving
requests σ(1), . . . , σ(t)), let SLRU(t) be the set of pages in LRU’s fast memory and let SOPT(t) be the
set of pages contained in OPT’s fast memory. We define S(t) := SLRU(t) \ SOPT(t). At each time t,
we further assign an integer weight w(p, t) from the range {1, . . . , k} to each page p ∈ SLRU(t) such
that for any two pages p, q ∈ SLRU(t), w(p, t) < w(q, t) iff the last request to p occurred before the
last request to q (i.e., the requests in SLRU are numbered from 1, . . . , k according to times of their
last occurrences). Recall that we use k to denote the size of the fast memory. We define the potential
function at time t to be

Φ(t) :=
∑

p∈S(t)

w(p, t).

We define the amortized cost aLRU(t) for serving request σ(t) as

aLRU(t) := cLRU(t) + Φ(t)− Φ(t− 1),

where cLRU(t) is the actual cost for serving request σ(t). Note that cLRU(t) = 1 if a page fault
for algorithm LRU occurs when serving request σ(t) and cLRU(t) = 0 otherwise. Similarly, we define
cOPT(t) to be the actual cost of the optimal offline algorithm for serving request σ(t). Again, cOPT(t) =
1 if OPT encounters a page fault in step t and cOPT(t) = 0 otherwise. In order to show that the
competitive ratio of the algorithm is at most k, you need to show that for every request σ(t),

aLRU(t) ≤ k · cOPT(t).

Exercise 2: (Generalized) Online Load Balancing (7 points)

In the lecture, a simple greedy algorithm was presented for an instance of the load balancing problem
where the speeds of all machines are assumed to be equal. This algorithm gives a factor 2 approximation
for the minimum makespan. As we have seen, it is not necessary to sort the jobs at the beginning of the

1



algorithm and we can always arbitrarily pick up a job and assign it to the machine with the smallest
load. Hence, the greedy algorithm can also be used as an online algorithm for the corresponding online
load balancing problem where the jobs arrive in an online fashion one by one. The algorithm then
achieves a competitive ratio of at most 2.

Now we are interested to find an online algorithm with constant competitive ratio for an generalization
of the above online load balancing problem where the speeds of machines are different; as before jobs
arrive one at a time in an online fashion. Assume that there are m machines and that for a given job
j, ti(j) is the processing time when running job j on machine i. For each 1 ≤ i ≤ m and 1 ≤ j ≤ n,
we assume that

ti(j) :=
w(j)

v(i)
,

where weight w(j) depends only on job j and speed v(i) depends only on the machine i.
smallskip
Consider the following procedure we run after job j arrives: assume that the machines are indexed
according to increasing speed. Let ~T (j) := (T1(j), T2(j), . . . , Tm(j)) denote the loads of the m
machines after job j is assigned.

Procedure Assign(~T (j − 1),λ)

/* λ is a given parameter.

Let S := {i : Ti(j − 1) + ti(j) ≤ 2λ};
if S = ∅ then

b := fail
else

k := min {i : i ∈ S};
Tk(j) := Tk(j − 1) + tk(j);
b := success

end

return (~T (j), b).

Hence, in Assign(~T, λ), job j is assigned to the slowest machine such that the load on this machine
is still below 2λ after the assignment.

(a) (4 points) Show that if λ ≥ T ∗ (where T ∗ is the optimal makespan), the procedure Assign always
succeeds (i.e., it never returns fail). As a consequence, if we knew the optimal makespan T ∗,
choosing λ = T ∗ would lead to a competitive ratio of 2.

Hint: By way of contradiction, assume that some job t cannot be assigned. Then show that there
must exist some job s (which was assigned earlier than t) which could have been assigned to a
slower machine.

(b) (3 points) Using the result of (a), devise an online algorithm with O(1) competitive ratio (for the
case when the optimal makespan is not known). using Assign repeatedly (with changing λ) for
solving an instance of online load balancing where the speed of machines are not necessarily equal.

Hint: Use Assign repeatedly (with changing λ). Define phases such that at the beginning of the
first phase, λ is set to be equal to the load (processing time) generated by the first arrival job on
the fastest machine.

Remark: Note that if you could not solve (a), you can still try to solve (b).

2


