

Chapter 1 Divide and Conquer

Algorithm Theory WS 2015/16

Fabian Kuhn

Divide-And-Conquer Principle

- Important algorithm design method
- Examples from Informatik 2:
 - Sorting: Mergesort, Quicksort
 - Binary search can be considered as a divide and conquer algorithm
- Further examples
 - Median
 - Compairing orders
 - Delaunay triangulation / Voronoi diagram
 - Closest pairs
 - Line intersections
 - Polynomial multiplication / FFT
 - ...

Example 1: Quicksort


```
function Quick (S: sequence): sequence;
{returns the sorted sequence S}
begin
      if \#S \leq 1 then return S
      else { choose pivot element v in S;
            partition S into S_{\ell} with elements < v,
            and S_r with elements > v
                                   v Quick(S_r)
            return Quick(S_{\ell})
end;
```

Example 2: Mergesort

Formulation of the D&C principle

Divide-and-conquer method for solving a problem instance of size n:

1. Divide

 $n \le c$: Solve the problem directly.

n > c: Divide the problem into k subproblems of sizes $n_1, \dots, n_k < n$ $(k \ge 2)$.

2. Conquer

Solve the k subproblems in the same way (recursively).

3. Combine

Combine the partial solutions to generate a solution for the original instance.

63

Pailition

410

rec.

merge

Analysis

Recurrence relation:

• T(n): max. number of steps necessary for solving an instance of size n

•
$$T(n) = \begin{cases} a & \text{if } n \le c \\ T(n_1) + \dots + T(n_k) & \text{if } n > c \end{cases}$$

Special case:
$$k = 2$$
, $\underline{n_1} = \underline{n_2} = \frac{n}{2}$

- cost for divide and combine: DC(n)
- $T(1) \leq \underline{a}$
- $\underline{T(n)} \leq \underline{2T(n/2)} + \underline{DC(n)}$

margesort!
$$T(n) = 2 \cdot T(\frac{n}{2}) + O(n)$$

$$\longrightarrow T(n) = O(n \log n)$$

Analysis, Example

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + \underline{cn}^2, \qquad \underline{T(1)} \le a$$

Guess the solution by repeated substitution:

$$T(u) \leq 2 \cdot T(\frac{1}{2}) + cu^{2}$$

$$\leq 2(2 \cdot T(\frac{1}{2}) + c(\frac{u}{2})^{2}) + cv^{2}$$

$$= 4 \cdot T(\frac{1}{4}) + (1 + \frac{1}{2}) \cdot cv^{2}$$

$$\leq 4(2 \cdot T(\frac{1}{8}) + c(\frac{u}{4})^{2}) + (1 + \frac{1}{2}) \cdot cu^{2}$$

$$= 8T(\frac{1}{8}) + (1 + \frac{1}{2} + \frac{1}{4}) \cdot cu^{2}$$

$$\leq 2^{i} T(\frac{1}{2}i) + (1 + \frac{1}{2} + \dots + \frac{1}{2}i) \cdot cu^{2}$$

$$\vdots$$

$$\leq n \cdot T(1) + 2cu^{2} \leq a \cdot n + 2cu^{2}$$

Analysis, Example

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + cn^2$$
, $T(1) \le a$

Verify by induction:

Guess:
$$T(u) < a \cdot n + 2 \cdot c \cdot n^2$$

Induction:
Base: $T(1) \le a + 2c$
Step: $T(u) \le 2T(\frac{n}{2}) + cu^2$
 $\le 2 \cdot (a\frac{n}{2} + 2c \cdot \frac{n^2}{4}) + cu^2$
 $= a \cdot n + 2cu^2$

Analysis, Example

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + cn^2, \qquad T(1) \le a$$

$$T(1) \leq \underline{a}$$

n-a

Guess the solution by drawing the recursion tree:

Comparing Orders

 Many web systems maintain user preferences / rankings on things like books, movies, restaurants, ...

Collaborative filtering:

- Predict user taste by comparing rankings of different users.
- If the system finds users with similar tastes, it can make recommendations (e.g., Amazon)
- Core issue: <u>Compare two rankings</u>
 - Intuitively, two rankings (of movies) are more similar, the more pairs are ordered in the same way
 - Label the first user's movies from 1 to n according to ranking
 - Order labels according to second user's ranking
 - How far is this from the ascending order (of the first user)?

Number of Inversions

Formal problem:

• Given: array $A = [a_1, a_2, a_3, ..., a_n]$ of distinct elements

• **Objective**: Compute number of inversions *I*

$$I := \left| \left\{ 0 \le \underline{i} < \underline{j} \le n \mid \underline{a_i} > \underline{a_j} \right) \right\} \right|$$

• Example: A = [4, 1, 5, 2, 7, 10, 6] 5 inversions

• Naive solution: jo through all pairs time: O(n2)

Divide and conquer

- 1. Divide array into 2 equal parts A_{ℓ} and A_r
- 2. Recursively compute #inversions in A_ℓ and A_r
- 3. Combine: add #pairs $a_i \in A_\ell$, $a_j \in A_r$ such that $a_i > a_j$

Combine Step: Example

• Assume A_{ℓ} and A_{r} are sorted

	3	5	8	13	14	18	24	25	30
-	1-	>1-	م. م ا	1,	T _i	1.	7.	i	١

$$1C = 7 + 7 + 6 + 3 + 3 + 3 + 1$$

Combine Step

Assume A_{ℓ} and A_r are sorted

Idea:

- Maintain pointers i and j to go through the sorted parts
- While going through the sorted parts, we merge the two parts into one sorted part (like in MergeSort)

and we count the number of inversions between the parts

Invariant:

- At each point in time, all inversions involving some element left of i (in A_{ℓ}) or left of j (in A_{r}) are counted
 - and all others still have to be counted...

Combine Step

Assume A_{ℓ} and A_r are sorted

- Pointers i and j, initially pointing to first elements of A_{ℓ} and A_r
- If $a_i \leq a_i$:
 - $-a_i$ is smallest among the remaining elements
 - No inversion of a_i and one of the remaining elements
 - Do not change count
- If $a_i > a_i$:
 - $-a_i$ is smallest among the remaining elements
 - $-a_i$ is smaller than all remaining elements in A_ℓ
 - Add number of remaining elements in A_ℓ to count
- Increment point, pointing to smaller element

Combine Step

- Need sub-sequences in sorted order
- Then, combine step is like merging in merge sort
- Idea: Solve sorting and #inversions at the same time!
 - 1. Partition A into two equal parts A_{ℓ} and A_r
 - 2. Recursively compute #inversions and sort A_{ℓ} and A_r

3. Merge A_ℓ and A_r to sorted sequence, at the same time, compute number of inversions between elements a_i in A_ℓ and a_j in A_r

Analysis, Guessing

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + c \cdot n, \qquad \underline{T(1)} \le c$$

Repeated substitution:

$$T(u) \leq Z T(\frac{1}{2}) + Cn$$
 $\leq 4 \cdot T(\frac{1}{4}) + 2cn$
 $\leq 8 \cdot T(\frac{1}{4}) + 3cn$
 \vdots
 $\leq 2^{i}T(\frac{1}{2}i) + i \cdot c \cdot n$
 \vdots
 $\leq n \cdot T(1) + c \cdot n \cdot \log_{2}n \leq c \cdot n(1 + \log_{2}n)$

Analysis, Induction

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + c \cdot n, \qquad T(1) \le c$$

Verify by induction:

$$T(n) \le C n (1 + \log n)$$
 $Sase: n = 1: T(1) \le C \cdot | (1 + 0) = C$
 $Step! T(n) \le 2 T(\frac{n}{2}) + C n$
 $Sase: n = C \cdot n \cdot \log_2 n + C n$
 $Sase: n = C \cdot n \cdot \log_2 n + C n$

Geometric divide-and-conquer

Closest Pair Problem: Given a set *S* of *n* points, find a pair of points with the smallest distance.

Divide-and-conquer solution

1. Divide: Divide S into two equal sized sets S_{ℓ} und S_r .

2. Conquer: $d_{\ell} = \min \operatorname{dist}(S_{\ell})$ $d_{r} = \min \operatorname{dist}(S_{r})$

3. Combine: $d_{\ell r} = \min\{d(p_{\ell}, p_r) \mid p_{\ell} \in S_{\ell}, p_r \in S_r\}$ return $\min\{d_{\ell}, d_r, d_{\ell r}\}$

Divide-and-conquer solution

21

1. Divide: Divide S into two equal sized sets S_{ℓ} und S_r .

2. Conquer: $d_{\ell} = \text{mindist}(S_{\ell})$ $d_{r} = \text{mindist}(Sr)$

3. Combine: $d_{\ell r} = \min\{d(p_{\ell}, p_r) \mid p_{\ell} \in S_{\ell}, p_r \in S_r\}$

return min $\{d_{\ell}, d_{r}, d_{\ell r}\}$

Fabian Kuhn

Merge step

- 1. Consider only points within distance < d of the bisection line, in the order of increasing y-coordinates.
- 2. For each point p consider all points q with

$$y_p \leq \underline{y_q} \leq y_p + d$$

3. There are at most 7 such points.

Combine step

Implementation

- Initially sort the points in S in order of increasing x-coordinates
- While computing closest pair, also <u>sort S</u> according to <u>y-coord</u>.
 - Partition S into S_{ℓ} and S_r , solve and sort sub-problems recursively $2\sqrt{3}$
 - Merge to get sorted S according to y-coordinates
 - Center points: points within x-distance $\underline{d} = \min\{d_{\ell}, d_r\}$ of center
 - Go through center points in S in order of incr. y-coordinates

linear in n

Running Time

Recurrence relation:

$$T(n) = 2 \cdot T(n/2) + \underline{c \cdot n}, \qquad T(1) = a$$

Solution:

 Same as for computing number of number of inversions, merge sort (and many others...)

$$T(n) = O(n \cdot \log n)$$

Recurrence Relations: Master Theorem

Recurrence relation

$$T(n) = \underline{a} \cdot T\left(\frac{n}{\underline{b}}\right) + f(n), \qquad T(n) = O(1) \text{ for } n \leq n_0$$

Cases

•
$$f(n) = O(n^c)$$
, $c < \log_b a$
 $T(n) = \Theta(n^{\log_b a})$

•
$$f(n) = \Omega(n^c)$$
, $c > \log_b a$

$$T(n) = \Theta(f(n))$$

•
$$f(n) = \Theta(\underline{n}^c \cdot \log^k n), \ c = \underline{\log_b a}$$
 $2 \cdot T(\frac{1}{2}) + O(\frac{1}{2})$
 $T(n) = \Theta(n^c \cdot \log^{k+1} n)$