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Greedy Algorithms 

• No clear definition, but essentially: 

 

 

 
 

• Depending on problem, greedy algorithms can give 
– Optimal solutions 

– Close to optimal solutions 

– No (reasonable) solutions at all 

• If it works, very interesting approach! 
– And we might even learn something about the structure of the problem 

 

Goal: Improve understanding where it works (mostly by examples) 

In each step make the choice that  
looks best at the moment! 
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Interval Scheduling 

• Given: Set of intervals, e.g. 
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14] 

 

 

 

 

 

 

 
 

• Goal: Select largest possible non-overlapping set of intervals 
– Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping 

 

• Example: Intervals are room requests; satisfy as many as possible 

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[0,10] 

[1,3] 

[1,4] 

[3,5] 

[4,7] 

[5,8] 

[11,14] 

[5,12] 

[8,10] [12,14] 

[7,9] [9,12] 
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Greedy Algorithms 

• Several possibilities… 

Choose first available interval: 

 

 

 

 

 
 
 

Choose shortest available interval: 

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[0,10] 

[1,3] 

[1,4] 

[3,5] 

[4,7] 

[5,8] 

[11,14] 

[5,12] 

[8,10] [12,14] 

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[6,9] 

[1,7] [8,14] 

[7,9] [9,12] 
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Greedy Algorithms 

Choose available request with earliest finishing time: 

 

 

 

 

 

 

 
 

𝑅 ≔ set of all requests; 𝑆 ≔ empty set; 
while 𝑅 is not empty do 
      choose 𝑟 ∈ 𝑅 with smallest finishing time 
      add 𝑟 to 𝑆 
      delete all requests from 𝑅 that are not compatible with 𝑟 
end                     // 𝑆 is the solution 

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[0,10] 

[1,3] 

[1,4] 

[3,5] 

[4,7] 

[5,8] 

[11,14] 

[5,12] 

[7,9] 

[8,10] [12,14] 

[1,3] 

[3,5] 

[5,8] 

[11,14] 

[8,10] 

[9,12] 
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Earliest Finishing Time is Optimal 

• Let 𝑂 be the set of intervals of an optimal solution 
 

• Can we show that 𝑆 = 𝑂? 
– No… 

 

 

 

 

 

 

 
 

• Show that 𝑆 = 𝑂 . 

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[0,10] 

[1,3] 

[1,4] 

[3,5] 

[4,7] 

[5,8] 

[11,14] 

[5,12] 

[8,10] [12,14] 

[7,9] [9,12] 

Greey Solution Alternative Optimal Sol.  
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Greedy Stays Ahead 

• Greedy Solution: 

𝑎1, 𝑏1 , 𝑎2, 𝑏2 , … , 𝑎 𝑆 , 𝑏 𝑆 , where 𝑏𝑖 ≤ 𝑎𝑖+1 

• Optimal Solution: 

𝑎1
∗ , 𝑏1

∗ , 𝑎2
∗ , 𝑏2

∗ , … , 𝑎 𝑂
∗ , 𝑏 𝑂

∗ , where 𝑏𝑖
∗ ≤ 𝑎𝑖+1

∗  

• Assume that 𝑏𝑖 = ∞ for 𝑖 > |𝑆| and 𝑏𝑖
∗ = ∞ for 𝑖 > |𝑂| 

 

Claim: For all 𝑖 ≥ 1, 𝑏𝑖 ≤ 𝑏𝑖
∗ 

 

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[0,10] 

[1,3] 

[1,4] 

[3,5] 

[4,7] 

[5,8] 

[11,14] 

[5,12] 

[8,10] [12,14] 

[7,9] [9,12] 
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Greedy Stays Ahead 

Claim: For all 𝑖 ≥ 1, 𝑏𝑖 ≤ 𝑏𝑖
∗ 

 

Proof (by induction on 𝑖): 

 

 

 

 

 

 

 

 

 

Corollary: Earliest finishing time algorithm is optimal.  
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Weighted Interval Scheduling 

Weighted version of the problem: 

• Each interval has a weight 

• Goal: Non-overlapping set with maximum total weight 

 

Earliest finishing time greedy algorithm fails: 

• Algorithm needs to look at weights 

• Else, the selected sets could be the ones with smallest weight… 

 

No simple greedy algorithm: 

• We will see an algorithm using another design technique later. 
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Interval Partitioning 

• Schedule all intervals: Partition intervals into as few as 
possible non-overlapping sets of intervals 
– Assign intervals to different resources, where each resource needs to 

get a non-overlapping set 
 

• Example: 
– Intervals are requests to use some room during this time 

– Assign all requests to some room such that there are no conflicts 

– Use as few rooms as possible 
 

• Assignment to 3 resources: 

[1,3] 

[1,4] 

[2,4] 

[4,7] 

[5,8] 

[5,12] 

[9,11] [12,14] 

[9,12] 
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Depth 

Depth of a set of intervals: 

• Maximum number passing over a single point in time 
 

• Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]): 

 

 

 

 

 
 

Lemma: Number of resources needed ≥ depth 

 

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[0,10] 

[1,3] 

[1,4] 

[3,5] 

[4,7] 

[5,8] 

[11,14] 

[5,12] 

[8,10] [12,14] 

[7,9] [9,12] 
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Greedy Algorithm 

Can we achieve a partition into “depth” non-overlapping sets? 
 

• Would mean that the only obstacles to partitioning are local… 
 

Algorithm: 

• Assigns labels 1, … to the sets; same label  non-overlapping 

 

1.  sort intervals by starting time: 𝐼1, 𝐼2, … , 𝐼𝑛 

2.  for 𝑖 = 1 to 𝑛 do 

3.       assign smallest possible label to 𝐼𝑖  
      (possible label: different from conflicting intervals 𝐼𝑗, 𝑗 < 𝑖) 

4.  end 
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Interval Partitioning Algorithm 

Example: 

• Labels: 

 

 

 

 

 

 

 

 

• Number of labels = depth = 4  

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[0,10] 

[1,3] 

[1,4] 

[3,5] 

[4,7] 

[5,8] 

[11,14] 

[5,12] 

[8,10] [12,14] 

[7,9] [9,12] 

[0,10] [0,10] 

[1,3] 

[1,4] 

[3,5] 

[4,7] 

[5,8] 

[5,12] 

[7,9] 

[8,10] 

[9,12] 

[11,14] 

[12,14] 
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Interval Partitioning: Analysis 

Theorem:  

a) Let 𝑑 be the depth of the given set of intervals. The 
algorithm assigns a label from 1, … , 𝑑 to each interval. 

b) Sets with the same label are non-overlapping 
 

Proof: 

• b) holds by construction 

• For a): 

– All intervals 𝐼𝑗, 𝑗 < 𝑖 overlapping with 𝐼𝑖, overlap at the beginning of 𝐼𝑖  

 

 

 

 

– At most 𝑑 − 1 such intervals  some label in {1, … , 𝑑} is available. 


