

Chapter 2 Greedy Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

Greedy Algorithms

No clear definition, but essentially:

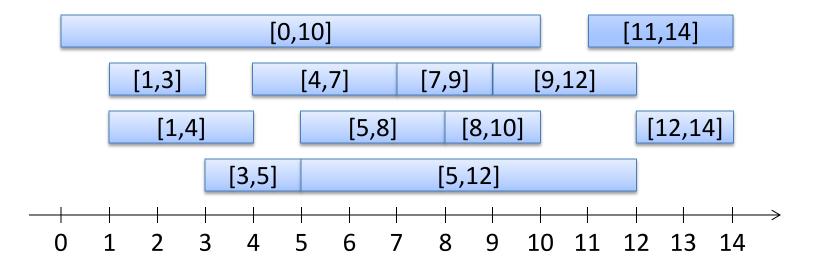
In each step make the choice that looks best at the moment!

- Depending on problem, greedy algorithms can give
 - Optimal solutions
 - Close to optimal solutions
 - No (reasonable) solutions at all
- If it works, very interesting approach!
 - And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Interval Scheduling

• **Given:** Set of intervals, e.g. [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

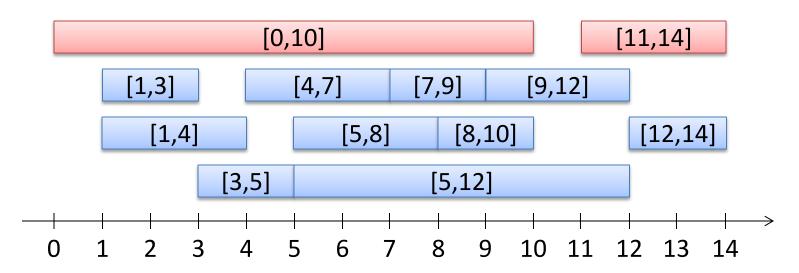


- Goal: Select largest possible non-overlapping set of intervals
 - Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping
- Example: Intervals are room requests; satisfy as many as possible

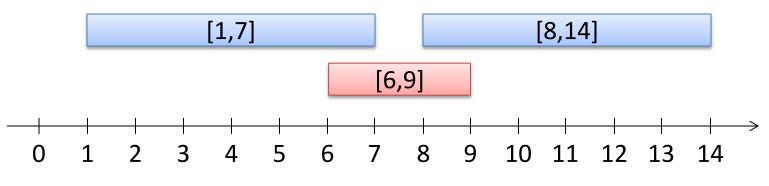
Greedy Algorithms

Several possibilities...

Choose first available interval:

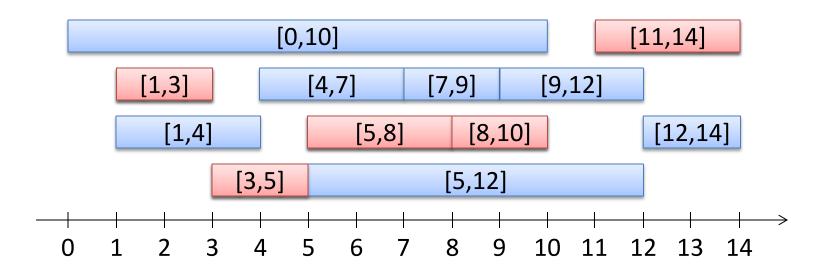


Choose shortest available interval:



Greedy Algorithms

Choose available request with earliest finishing time:



 $R \coloneqq \text{set of all requests}; S \coloneqq \text{empty set};$ while R is not empty do
 choose $r \in R$ with smallest finishing time
 add r to S delete all requests from R that are not compatible with rend
 | // S is the solution

Earliest Finishing Time is Optimal

- Let O be the set of intervals of an optimal solution
- Can we show that S = 0?
 - No...



• Show that |S| = |O|.

Greedy Stays Ahead

Greedy Solution:

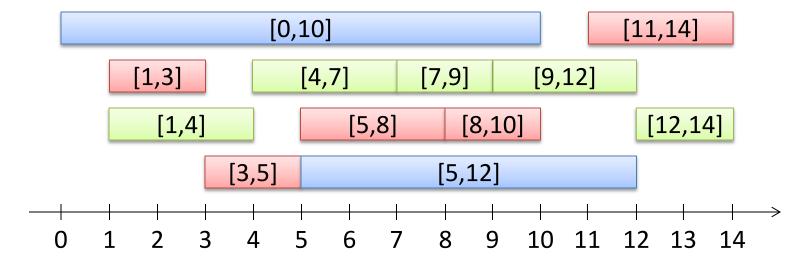
$$[a_1, b_1], [a_2, b_2], \dots, [a_{|S|}, b_{|S|}], \quad \text{where } b_i \le a_{i+1}$$

Optimal Solution:

$$[a_1^*, b_1^*], [a_2^*, b_2^*], \dots, [a_{|O|}^*, b_{|O|}^*], \quad \text{where } b_i^* \le a_{i+1}^*$$

• Assume that $b_i = \infty$ for i > |S| and $b_i^* = \infty$ for i > |O|

Claim: For all $i \geq 1$, $b_i \leq b_i^*$



Greedy Stays Ahead

Claim: For all $i \geq 1$, $b_i \leq b_i^*$

Proof (by induction on i):

Corollary: Earliest finishing time algorithm is optimal.

Weighted Interval Scheduling

Weighted version of the problem:

- Each interval has a weight
- Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

- Algorithm needs to look at weights
- Else, the selected sets could be the ones with smallest weight...

No simple greedy algorithm:

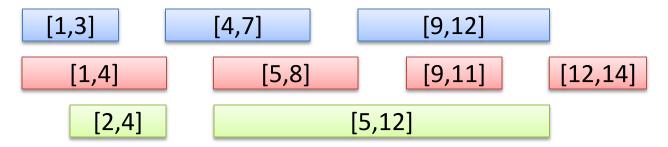
We will see an algorithm using another design technique later.

Interval Partitioning

- Schedule all intervals: Partition intervals into as few as possible non-overlapping sets of intervals
 - Assign intervals to different resources, where each resource needs to get a non-overlapping set

Example:

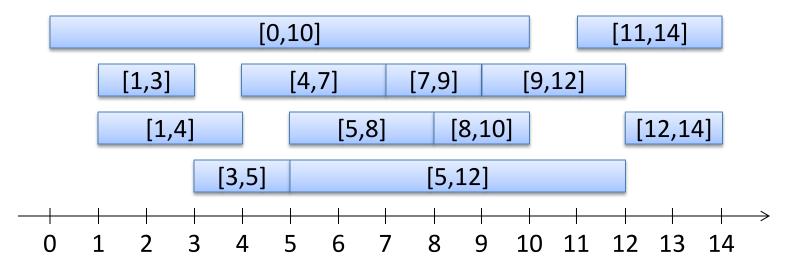
- Intervals are requests to use some room during this time
- Assign all requests to some room such that there are no conflicts
- Use as few rooms as possible
- Assignment to 3 resources:



Depth

Depth of a set of intervals:

- Maximum number passing over a single point in time
- Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):



Lemma: Number of resources needed ≥ depth

Greedy Algorithm

Can we achieve a partition into "depth" non-overlapping sets?

Would mean that the only obstacles to partitioning are local...

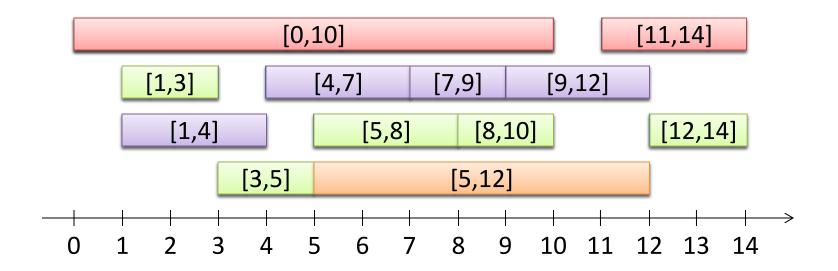
Algorithm:

- Assigns labels 1, ... to the sets; same label \rightarrow non-overlapping
- 1. sort intervals by starting time: I_1 , I_2 , ..., I_n
- 2. for i = 1 to n do
- 3. assign smallest possible label to I_i (possible label: different from conflicting intervals I_j , j < i)
- 4. **end**

Interval Partitioning Algorithm

Example:

• Labels:



Number of labels = depth = 4

Interval Partitioning: Analysis

Theorem:

- a) Let d be the depth of the given set of intervals. The algorithm assigns a label from 1, ..., d to each interval.
- b) Sets with the same label are non-overlapping

Proof:

- b) holds by construction
- For a):
 - All intervals I_j , j < i overlapping with I_i , overlap at the beginning of I_i

- At most d-1 such intervals → some label in $\{1, ..., d\}$ is available.