
Chapter 2

Greedy Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Greedy Algorithms

• No clear definition, but essentially:

• Depending on problem, greedy algorithms can give
– Optimal solutions

– Close to optimal solutions

– No (reasonable) solutions at all

• If it works, very interesting approach!
– And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

In each step make the choice that
looks best at the moment!

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Interval Scheduling

• Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Goal: Select largest possible non-overlapping set of intervals
– Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

• Example: Intervals are room requests; satisfy as many as possible

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Greedy Algorithms

• Several possibilities…

Choose first available interval:

Choose shortest available interval:

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[6,9]

[1,7] [8,14]

[7,9] [9,12]

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Greedy Algorithms

Choose available request with earliest finishing time:

𝑅 ≔ set of all requests; 𝑆 ≔ empty set;
while 𝑅 is not empty do
 choose 𝑟 ∈ 𝑅 with smallest finishing time
 add 𝑟 to 𝑆
 delete all requests from 𝑅 that are not compatible with 𝑟
end // 𝑆 is the solution

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[7,9]

[8,10] [12,14]

[1,3]

[3,5]

[5,8]

[11,14]

[8,10]

[9,12]

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Earliest Finishing Time is Optimal

• Let 𝑂 be the set of intervals of an optimal solution

• Can we show that 𝑆 = 𝑂?
– No…

• Show that 𝑆 = 𝑂 .

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

Greey Solution Alternative Optimal Sol.

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Greedy Stays Ahead

• Greedy Solution:

𝑎1, 𝑏1 , 𝑎2, 𝑏2 , … , 𝑎 𝑆 , 𝑏 𝑆 , where 𝑏𝑖 ≤ 𝑎𝑖+1

• Optimal Solution:

𝑎1
∗ , 𝑏1

∗ , 𝑎2
∗ , 𝑏2

∗ , … , 𝑎 𝑂
∗ , 𝑏 𝑂

∗ , where 𝑏𝑖
∗ ≤ 𝑎𝑖+1

∗

• Assume that 𝑏𝑖 = ∞ for 𝑖 > |𝑆| and 𝑏𝑖
∗ = ∞ for 𝑖 > |𝑂|

Claim: For all 𝑖 ≥ 1, 𝑏𝑖 ≤ 𝑏𝑖
∗

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Greedy Stays Ahead

Claim: For all 𝑖 ≥ 1, 𝑏𝑖 ≤ 𝑏𝑖
∗

Proof (by induction on 𝑖):

Corollary: Earliest finishing time algorithm is optimal.

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Weighted Interval Scheduling

Weighted version of the problem:

• Each interval has a weight

• Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

• Algorithm needs to look at weights

• Else, the selected sets could be the ones with smallest weight…

No simple greedy algorithm:

• We will see an algorithm using another design technique later.

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Interval Partitioning

• Schedule all intervals: Partition intervals into as few as
possible non-overlapping sets of intervals
– Assign intervals to different resources, where each resource needs to

get a non-overlapping set

• Example:
– Intervals are requests to use some room during this time

– Assign all requests to some room such that there are no conflicts

– Use as few rooms as possible

• Assignment to 3 resources:

[1,3]

[1,4]

[2,4]

[4,7]

[5,8]

[5,12]

[9,11] [12,14]

[9,12]

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Depth

Depth of a set of intervals:

• Maximum number passing over a single point in time

• Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):

Lemma: Number of resources needed ≥ depth

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

Greedy Algorithm

Can we achieve a partition into “depth” non-overlapping sets?

• Would mean that the only obstacles to partitioning are local…

Algorithm:

• Assigns labels 1, … to the sets; same label  non-overlapping

1. sort intervals by starting time: 𝐼1, 𝐼2, … , 𝐼𝑛

2. for 𝑖 = 1 to 𝑛 do

3. assign smallest possible label to 𝐼𝑖
 (possible label: different from conflicting intervals 𝐼𝑗, 𝑗 < 𝑖)

4. end

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Interval Partitioning Algorithm

Example:

• Labels:

• Number of labels = depth = 4

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

[0,10] [0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[5,12]

[7,9]

[8,10]

[9,12]

[11,14]

[12,14]

Algorithm Theory, WS 2015/16 Fabian Kuhn 14

Interval Partitioning: Analysis

Theorem:

a) Let 𝑑 be the depth of the given set of intervals. The
algorithm assigns a label from 1, … , 𝑑 to each interval.

b) Sets with the same label are non-overlapping

Proof:

• b) holds by construction

• For a):

– All intervals 𝐼𝑗, 𝑗 < 𝑖 overlapping with 𝐼𝑖, overlap at the beginning of 𝐼𝑖

– At most 𝑑 − 1 such intervals  some label in {1, … , 𝑑} is available.

