

Chapter 2 Greedy Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

Greedy Algorithms

• No clear definition, but essentially:

In each step make the choice that looks best at the moment!

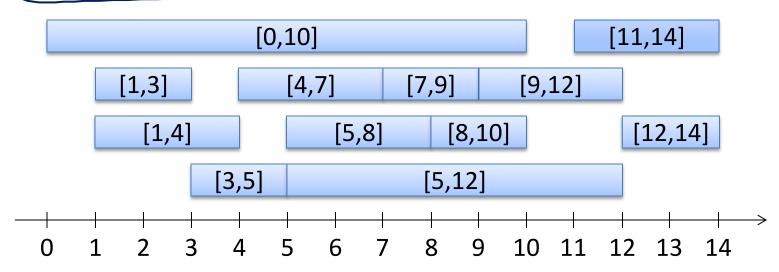
no backtracking

- Depending on problem, greedy algorithms can give
 - Optimal solutions
 - Close to optimal solutions
 - No (reasonable) solutions at all
- If it works, very interesting approach!
 - And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Interval Scheduling

Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]



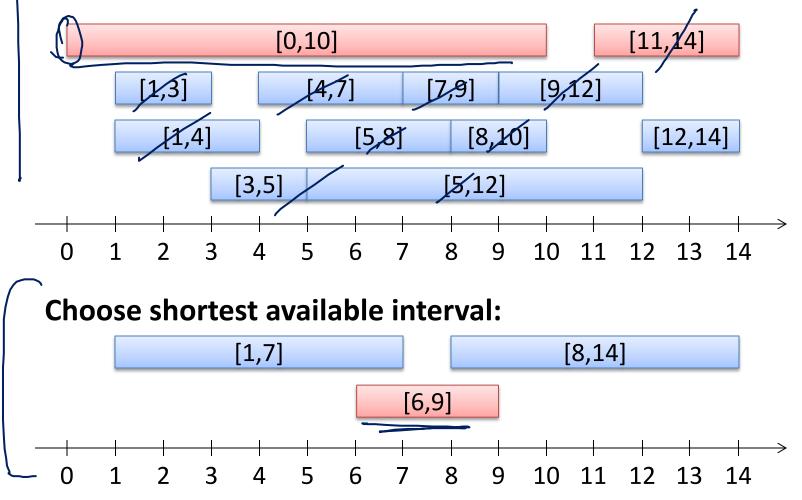
- **Goal:** Select largest possible non-overlapping set of intervals
 - Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping
- Example: Intervals are room requests; satisfy as many as possible

UNI FREIBURG

Greedy Algorithms

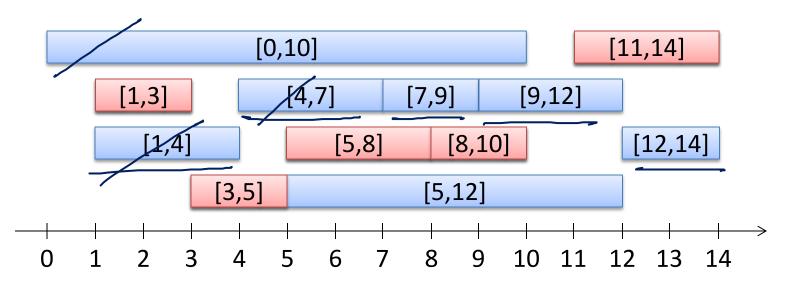
• Several possibilities...

Choose first available interval:



Greedy Algorithms

Choose available request with earliest finishing time:

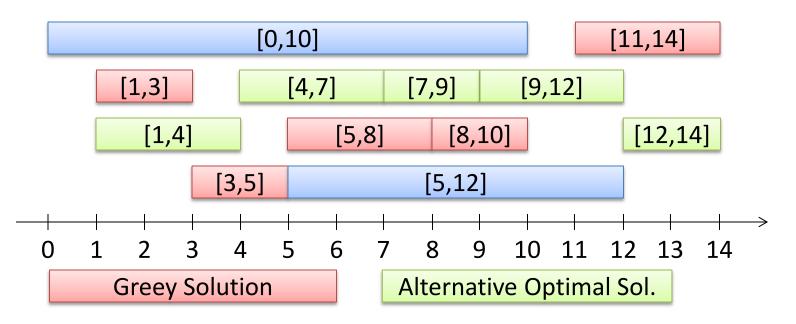


$\begin{array}{l} R \coloneqq \text{set of all requests; } S \coloneqq \text{empty set;} \\ \textbf{while } R \text{ is not empty } \textbf{do} \\ \text{choose } r \in R \text{ with smallest finishing time} \\ \text{add } r \text{ to } S \\ \text{delete all requests from } R \text{ that are not compatible with } r \\ \textbf{end} \qquad // S \text{ is the solution} \end{array}$

UNI FREIBURG

Earliest Finishing Time is Optimal

- Let *O* be the set of intervals of an optimal solution
- Can we show that S = O?
 - No...



• Show that |S| = |O|.

Algorithm Theory, WS 2015/16

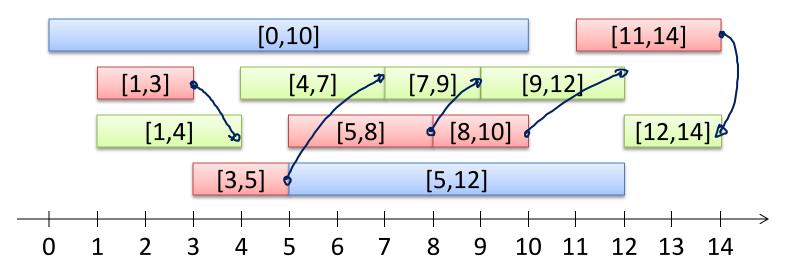
UNI FREIBURG

• Greedy Solution: $\begin{bmatrix} a_1, b_1 \end{bmatrix}, \begin{bmatrix} a_2, b_2 \end{bmatrix}, \dots, \begin{bmatrix} a_{|S|}, b_{|S|} \end{bmatrix}, \quad \text{where } b_i \leq a_{i+1}$

1512101

- Optimal Solution: $[a_1^*, b_1^*], [a_2^*, b_2^*], \dots, [a_{|0|}^*, b_{|0|}^*], \text{ where } b_i^* \le a_{i+1}^*$
- Assume that $\underline{b_i} = \infty$ for i > |S| and $b_i^* = \infty$ for i > |O|

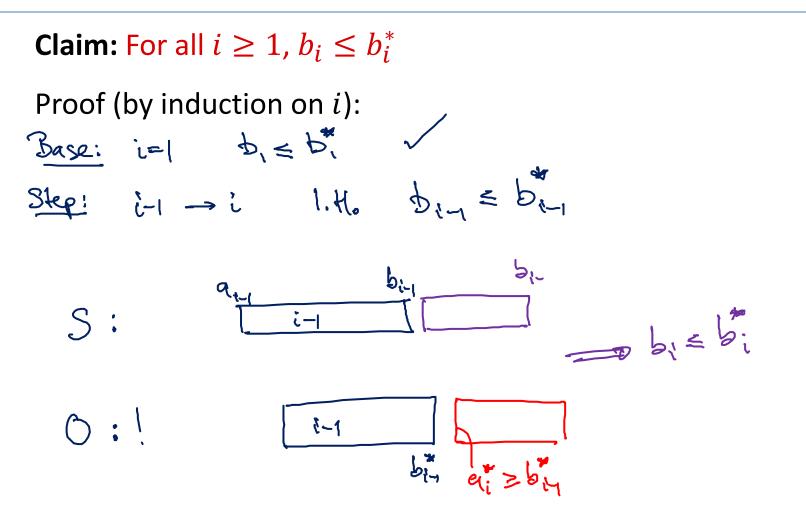
Claim: For all $i \ge 1$, $b_i \le b_i^*$



BURG

FREI

Greedy Stays Ahead



Corollary: Earliest finishing time algorithm is optimal.

Algorithm Theory, WS 2015/16

Fabian Kuhn

Weighted Interval Scheduling

Weighted version of the problem:

- Each interval has a weight
- Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

- Algorithm needs to look at weights
- Else, the selected sets could be the ones with smallest weight...

No simple greedy algorithm:

• We will see an algorithm using another design technique later.

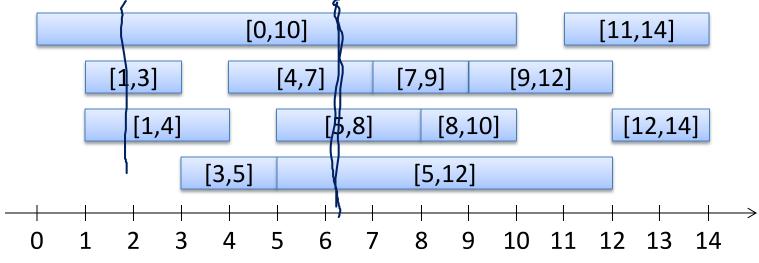
Interval Partitioning

- Schedule all intervals: Partition intervals into as few as possible non-overlapping sets of intervals
 - Assign intervals to different resources, where each resource needs to get a non-overlapping set
- Example:
 - Intervals are requests to use some room during this time
 - Assign all requests to some room such that there are no conflicts
 - Use as few rooms as possible
- Assignment to 3 resources:



Depth of a set of intervals:

- Maximum number passing over a single point in time
- Depth of initial example is 4 (e.g., [0,10], [4,7], [5,8], [5,12]):



Lemma: Number of resources needed \geq depth

Greedy Algorithm

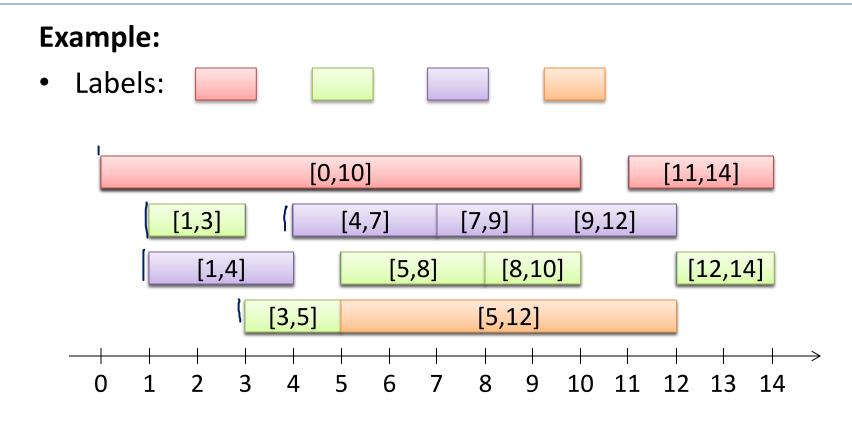
Can we achieve a partition into "depth" non-overlapping sets?

• Would mean that the only obstacles to partitioning are local...

Algorithm:

- Assigns labels 1, ... to the sets; same label \rightarrow non-overlapping
- 1. sort intervals by starting time: $I_1, I_2, ..., I_n$
- 2. **for** i = 1 **to** n **do**
- 3. assign smallest possible label to I_i (possible label: different from conflicting intervals I_j , j < i)
- 4. **end**

Interval Partitioning Algorithm



• Number of labels = depth = 4

Interval Partitioning: Analysis

Theorem:

- a) Let d be the depth of the given set of intervals. The algorithm assigns a label from $1, \ldots, d$ to each interval.
- b) Sets with the same label are non-overlapping

Proof:

- b) holds by construction
- For a):
 - All intervals I_j , j < i overlapping with I_i , overlap at the beginning of I_i

