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Weighted Interval Scheduling 

• Given: Set of intervals, e.g. 
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14] 

• Each interval has a weight 𝒘 

 

 

 

 

 

 

 
 

• Goal: Non-overlapping set of intervals of largest possible weight 
– Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping 

 

• Example: Intervals are room requests of different importance 

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[0,10], 1 

[1,3], 1 

[1,4], 10 

[3,5], 2 

[4,7], 5 

[5,8], 1 

[11,14], 5 

[5,12], 25 

[8,10], 1 [12,14], 1 

[7,9], 4 [9,12], 8 
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Greedy Algorithms 

Choose available request with earliest finishing time: 

 

 

 

 

 

 

 

• Algorithm is not optimal any more 
– It can even be arbitrarily bad… 

 

• No greedy algorithm known that works 

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[0,10], 1 

[1,3], 1 

[1,4], 10 

[3,5], 2 

[4,7], 5 

[5,8], 1 

[11,14], 5 

[5,12], 25 

[8,10], 1 [12,14], 1 

[7,9], 4 [9,12], 2 
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Solving Weighted Interval Scheduling 

• Interval 𝑖: start time 𝑠(𝑖), finishing time: 𝑓(𝑖), weight: 𝑤(𝑖) 
 

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝑓(𝑖) 
– 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0  

 

• Simple observation: 
Opt. solution contains interval 𝑛 or it doesn’t contain interval 𝑛 
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Solving Weighted Interval Scheduling 

• Interval 𝑖: start time 𝑠(𝑖), finishing time: 𝑓(𝑖), weight: 𝑤(𝑖) 
 

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝑓(𝑖) 
– 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0  

 

• Simple observation: 
Opt. solution contains interval 𝑛 or it doesn’t contain interval 𝑛 
 

• Weight of optimal solution for only intervals 1,… , 𝑘: 𝑊 𝑘  
Define 𝑝 𝑘 ≔ max 𝑖 ∈ 0,… , 𝑘 − 1 ∶ 𝑓 𝑖 ≤ 𝑠 𝑘  
 

• Opt. solution does not contain interval 𝑛: 𝑾 𝒏 = 𝑾 𝒏− 𝟏  
 

Opt. solution contains interval 𝑛: 𝑾 𝒏 = 𝒘 𝒏 +𝑾(𝒑 𝒏 ) 
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Example 

 

 

 

 

 

 

 

 

 

 

 

[0,5], w=2 

[1,7], 4 

[5,9], 4 

[10,13], 1 

[2,11], 5 

[9,12], 2 

𝟏 

Interval: 

𝟐 

𝟑 

𝟒 

𝟓 

𝟔 𝒑 𝟔 = 𝟑 

𝒑 𝟏 = 𝟎 

𝒑 𝟐 = 𝟎 

𝒑 𝟑 = 𝟏 

𝒑 𝟒 = 𝟎 

𝒑 𝟓 = 𝟑 
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Recursive Definition of Optimal Solution 

• Recall: 
– 𝑊(𝑘): weight of optimal solution with intervals 1,… , 𝑘 

– 𝑝 𝑘 : last interval to finish before interval 𝑘 starts 
 

• Recursive definition of optimal weight: 
 

∀𝑘 > 1:  𝑊 𝑘 = max 𝑊 𝑘 − 1 ,𝑤 𝑘 +𝑊 𝑝 𝑘  
    

                 𝑊 1 = 𝑤(1) 

 

• Immediately gives a simple, recursive algorithm 
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Running Time of Recursive Algorithm 

 

 

 

 

 

 

 

 

 

𝟏 

𝟐 

𝟑 

𝟒 

𝟓 

𝟔 𝒑 𝟔 = 𝟑 

𝒑 𝟏 = 𝟎 

𝒑 𝟐 = 𝟎 

𝒑 𝟑 = 𝟏 

𝒑 𝟒 = 𝟎 

𝒑 𝟓 = 𝟑 

𝑊(6) 

𝑊(5) 𝑊(3) 

𝑊(4) 𝑊(3) 𝑊(2) 𝑊(1) 

𝑊(3) 

𝑊(2) 

𝑊(1) 

𝑊(1) 

𝑊(2) 𝑊(1) 𝑊(1) 

𝑊(1) 
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Memoizing the Recursion 

• Running time of recursive algorithm: exponential! 
 

• But, alg. only solves 𝑛 different sub-problems: 𝑊 1 ,… ,𝑊(𝑛) 
 

• There is no need to compute them multiple times 
 

Memoization:  

• Store already computed values for future use (recursive calls) 
 

Efficient algorithm: 

1.  𝑊 0 ≔ 0; compute values 𝑝(𝑖) 

2.  for 𝑖 ≔ 1 to 𝑛 do 

3.        𝑊 𝑖 ≔ max 𝑊 𝑖 − 1 ,𝑤 𝑖 +𝑊[𝑝 𝑖 ]  

4.  end 
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Example 

 

 

 

 

 

 

 

 

 

 

 
 

Computing the schedule: store where you come from! 

𝒘 = 𝟐 

𝒘 = 𝟒 

𝒘 = 𝟒 

𝒘 = 𝟏 

𝒘 = 𝟓 

𝒘 = 𝟐 

𝟏 

𝟐 

𝟑 

𝟒 

𝟓 

𝟔 𝒑 𝟔 = 𝟑 

𝒑 𝟏 = 𝟎 

𝒑 𝟐 = 𝟎 

𝒑 𝟑 = 𝟏 

𝒑 𝟒 = 𝟎 

𝒑 𝟓 = 𝟑 

𝒘 = 𝟑 𝟕 𝒑 𝟕 = 𝟓 

𝒘 = 𝟔 𝟖 𝒑 𝟖 = 𝟒 

 𝟎 𝑾:  𝟐  𝟒  𝟔  𝟔  𝟖  𝟖  𝟏𝟏  𝟏𝟐 

𝑊[0] 𝑊[1] 𝑊[2] 𝑊[3] 𝑊[4] 𝑊[5] 𝑊[6] 𝑊[7] 𝑊[8] 
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Matrix-chain multiplication 

Given:  sequence (chain)  𝐴1, 𝐴2, … , 𝐴𝑛  of matrices 
 

Goal:    compute the product 𝐴1  𝐴2 …  𝐴𝑛  

 

Problem: Parenthesize the product in a way that minimizes 
     the number of scalar multiplications.  

 

Definition: A product of matrices is fully parenthesized if it is  

• a single matrix  

• or the product of two fully parenthesized matrix products, 
surrounded by parentheses. 
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All possible fully parenthesized matrix products of the chain 
𝐴1, 𝐴2, 𝐴3, 𝐴4: 

 
( 𝐴1 ( 𝐴2 ( 𝐴3 𝐴4 ) ) ) 

 
( 𝐴1 ( ( 𝐴2 𝐴3 ) 𝐴4 ) ) 

 
( ( 𝐴1 𝐴2 )( 𝐴3 𝐴4 ) ) 

 
( ( 𝐴1 ( 𝐴2 𝐴3 ) ) 𝐴4 ) 

 
( ( ( 𝐴1 𝐴2 ) 𝐴3 ) 𝐴4 ) 

 

Example 
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Different parenthesizations 

 

Different parenthesizations correspond to different trees: 

𝐴1 𝐴2 𝐴3𝐴4  

𝐴1 𝐴2𝐴3 𝐴4  

𝐴1𝐴2 𝐴3𝐴4  

𝐴1𝐴2 𝐴3 𝐴4  
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Number of different parenthesizations 

• Let 𝑃(𝑛) be the number of alternative parenthesizations of 
the product 𝐴1 ⋅ … ⋅ 𝐴𝑛: 

•   

𝑃 1 = 1 

𝑃 𝑛 =  𝑃 𝑘 ⋅ 𝑃(𝑛 − 𝑘)

𝑛−1

𝑘=1

, for 𝑛 ≥ 2 

  

𝑃 𝑛 + 1 =
1

𝑛 + 1
2𝑛
𝑛
≈
4𝑛

𝑛 𝜋𝑛
+ 𝑂

4𝑛

𝑛5
 

  

𝑃 𝑛 + 1 = 𝐶𝑛        (𝑛
𝑡ℎ Catalan number) 

 

• Thus: Exhaustive search needs exponential time! 
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Multiplying Two Matrices 

𝐴 = 𝑎𝑖𝑗 𝑝×𝑞 ,  𝐵 = 𝑏𝑖𝑗 𝑞×𝑟 , 𝐴 ⋅ 𝐵 = 𝐶 = 𝑐𝑖𝑗 𝑝×𝑟 
 

𝑐𝑖𝑗 =  𝑎𝑖𝑘𝑏𝑘𝑗

𝑞

𝑘=1

 

 
 
 

Algorithm Matrix-Mult 

Input:     (𝑝 × 𝑞) matrix 𝐴, 𝑞 × 𝑟  matrix 𝐵 

Output:  (𝑝 × 𝑟) matrix 𝐶 = 𝐴 ⋅ 𝐵 
1  for 𝑖 ≔ 1 to 𝑝 do 
2      for 𝑗 ≔ 1 to 𝑟 do 
3           𝐶 𝑖, 𝑗 ≔ 0; 
4           for 𝑘 ≔ 1 to 𝑞 do 
5        𝐶 𝑖, 𝑗 ≔ 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ⋅ 𝐵[𝑘, 𝑗] 
 

Number of multiplications and additions: 𝒑  𝒒  𝒓  

Remark:  
 

Using this algorithm, multiplying 
two (𝑛  𝑛) matrices requires 𝑛3 

multiplications. This can also be 
done using 𝑂(𝑛2.376) 
multiplications. 
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Matrix-chain multiplication: Example 

Computation of the product 𝐴1 𝐴2 𝐴3 , where 
 

𝐴1 : (50  5) matrix 

𝐴2 : (5  100) matrix 

𝐴3 : (100  10) matrix 
 

a) Parenthesization ((𝐴1 𝐴2)𝐴3) and 𝐴1 𝐴2𝐴3  require: 

 

𝐴′ =  (𝐴1 𝐴2):                                 𝐴
′′ = (𝐴2𝐴3): 

 

𝐴′𝐴3:                                                𝐴1𝐴′′: 

 

Sum: 
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Structure of an Optimal Parenthesization 

• (𝐴ℓ…𝑟): optimal parenthesization of 𝐴ℓ ⋅ … ⋅ 𝐴𝑟 
 

For some 1 ≤ 𝑘 < 𝑛: 𝑨𝟏…𝒏 = 𝑨𝟏…𝒌 ⋅ 𝑨𝒌+𝟏…𝒏  
 

• Any optimal solution contains optimal solutions for sub-problems 
 

• Assume matrix 𝐴𝑖 is a 𝑑𝑖−1 × 𝑑𝑖 -matrix 
 

• Cost to solve sub-problem 𝐴ℓ ⋅ … ⋅ 𝐴𝑟 , ℓ ≤ 𝑟 optimally: 𝐶(ℓ, 𝑟) 
 

• Then: 
𝑪 𝒂, 𝒃 = 𝒎𝒊𝒏

𝒂≤𝒌<𝒃
𝑪 𝒂, 𝒌 + 𝑪 𝒌 + 𝟏, 𝒃 + 𝒅𝒂−𝟏𝒅𝒌 𝒅𝒃 

  

𝑪 𝒂, 𝒂 = 𝟎 
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Recursive Computation of Opt. Solution 

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5: 

𝐶(1,5) 

𝐶(1,2) 𝐶(1,3) 𝐶(1,4) 𝐶(2,5) 

𝐶(2,3) 𝐶(1,2) 

𝐶(3,5) 𝐶(4,5) 

𝐶(1,3) 𝐶(1,2) 𝐶(2,4) 𝐶(2,3) 𝐶(2,3) 𝐶(2,4) 𝐶(4,5) 𝐶(3,5) 

𝐶(4,5) 𝐶(3,4) 

𝐶(2,3) 𝐶(1,2) 𝐶(3,4) 𝐶(2,3) 𝐶(3,4) 𝐶(2,3) 𝐶(4,5) 𝐶(3,4) 
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Using Meomization 

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5: 

 

 

 

 

 

 

 

Compute 𝐴1 ⋅ … ⋅ 𝐴𝑛: 
 

• Each 𝐶(𝑖, 𝑗), 𝑖 < 𝑗 is computed exactly once  𝑂 𝑛2  values 

• Each 𝐶(𝑖, 𝑗) dir. depends on 𝐶(𝑖, 𝑘), 𝐶(𝑘, 𝑗) for 𝑖 < 𝑘 < 𝑗 
 

Cost for each 𝐶(𝑖, 𝑗): 𝑂(𝑛)  overall time: 𝑶 𝒏𝟑  

𝐶(1,2) 𝐶(2,3) 𝐶(3,4) 𝐶(4,5) 

𝐶(1,3) 𝐶(2,4) 𝐶(3,5) 

𝐶(1,4) 𝐶(2,5) 

𝐶(1,5) 
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„Memoization“ for increasing the efficiency of a recursive solution: 

 

• Only the first time a sub-problem is encountered, its solution is 
computed and then stored in a table. Each subsequent time that 
the subproblem is encountered, the value stored in the table is 
simply looked up and returned 
                                                  (without repeated computation!). 

 

• Computing the solution: For each sub-problem, store how the 
value is obtained (according to which recursive rule). 

Dynamic Programming 
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Dynamic Programming 

Dynamic programming / memoization can be applied if 

 

• Optimal solution contains optimal solutions to sub-problems 
(recursive structure) 

 

• Number of sub-problems that need to be considered is small 
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Remarks about matrix-chain multiplication  

 

1. There is an algorithm that determines an optimal 
parenthesization in time  
 

𝑂 𝑛 ⋅ log 𝑛 . 

 

2. There is a linear time algorithm that determines a 
parenthesization using at most  
 

1.155 ⋅ 𝐶(1, 𝑛) 
 

multiplications. 

 

 


