UNI

"
Chapter 3

Dynamic Programming

FREIBURG

Algorithm Theory
WS 2015/16

Fabian Kuhn

Weighted Interval Scheduling

UNI

FREIBURG

e Given: Set of intervals, e.g.

[0,10],[1,3],[1,4],[3,5],14,7],15,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

e Eachinterval has a weight <

[0,10], 1

[11,14],5

™\

[1,3], 1 4,715 (117,9], 4

[9,12], 8

[1,4], 10

N

[5,8], 1 [8,10], 1 [12,14], 1

[3,5], 2

[5,12], 25

6 7 8

9

10 11 12 13 14

 Goal: Non-overlapping set of intervals of largest possible weight

— Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

e Example: Intervals are room requests of different importance

Algorithm Theory, WS 2015/16

Fabian Kuhn

Greedy Algorithms

Choose available request with earliest finishing time:

[0,10], 1 [11,14], 5
[1,3], 1 [4,71,5 |[7,9],4| [9,12],2
C 24,10 P [58,1 |su0,1 @
3,5],2 [5,12], 25 \‘3
o—

UNI
f

FREIBURG

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e Algorithm is not optimal any more

— It can even be arbitrarily bad...

 No greedy algorithm known that works

Algorithm Theory, WS 2015/16 Fabian Kuhn

Solving Weighted Interval Scheduling

UNI
FREIBURG

* Interval start time i 'Q finishing time: "Q'Q weight: 0 "Q

 Assume intervals pi8 F are sorted by increasing "QQ
— 11 "Wp) "Fc) E "Q¢ , for convenience: @D T

-\
,/ ?/%/ S A S e

e Simple observation: =

Opt. solution contains interval € or it doesn’t contain interval €
- ‘3%‘ soludlon doedit conkerun el n
-—30'{{‘. 5& %Dt ‘tv&ﬂ\mts \/.../Uk is ‘\'(AQ Saml as 4&0@4 SoQ @N \4. \/ .-./V\-I

— agh. slubbn coutadvs Wdenm{ \
- K
TN QYRM‘((Q'; r n $

\

0?\ sal. \s cow?@‘;loe 3"9-

b 5o for s (o v

\
' l
o Tdenpe\ v ‘\ Ku-3]
{

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Solving Weighted Interval Scheduling ;

e Interval ‘Qstarttimei "Q finishing time: "Q"Q weight: 0 "Q

 Assume intervals pi8 F are sorted by increasing "QQ

— 1 "@p) W) E Q¢ ,for convenience: @) T
g p——
Lt

e Simple observation:
Opt. solution contains interval € or it doesn’t contain interval €

i

S
* Weight of optimal solution for only intervals pf8 hQ w (Q
DefineN(Q h | Af@ {8 hQ p} DAQP (0}

e Opt. solution does not contain interval € T (=) (=)

Opt. solution contains interval é:—-”;) o(m) T k)
(A)(u) = WaX g(/\)(v‘-()/ W) + w(‘?c"@g

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

UNI
FREIBURG

Example %%
Interval:
[0,5], w=2 -t)
[1,7], 4 -)
[5,9], 4 -)
[2,11], 5 = -)
[9,12], 2 -t)
[10,13], 1 -r)
\o’imv searcda

| ?(E) .0 Q@JM)

Algorithm Theory, WS 2015/16 Fabian Kuhn

Recursive Definition of Optimal Solution

UNI

FREIBURG

e Recall:
— "Q: weight of optimal solution with intervals pf8 hQ
— N(Q: last interval to finish before interval Ostarts

e Recursive definition of optimal weight: J
1 pdo(Q | A PR (0 o (1(Q))
wpP) vp Won=0

 Immediately gives a simple, recursive algorithm

Algorithm Theory, WS 2015/16 Fabian Kuhn

Running Time of Recursive Algorithm

UNI

FREIBURG

-t)

=t)
=t)

)
-) .
-)

/ wg)+ W)
15

W C \ ® p ® p
d) P muu“\u& Ruo QVVMOQ

® G
|

W
T
w P

o p

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI

Memoizing the Recursion

FREIBURG

 Running time of recursive algorithm: exponential!

A 4

e But, alg. only solves £ different sub-problems: & (p)8 ho €

 There is no need to compute them multiple times

Memoization:
e Store already computed values for future use (recursive calls)

L
Efficient algorithm: 21-1 - & %) '\
) v

1. @[] h 1T compute values 1] “Q ’
qc"_' —_——

2. for'(h ptoc do

3. @[QRh | A@B[Q pl (R & (R} | O Hue

—— = ___—3

4. end

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

UNI
FREIBURG

Computing the schedule: store where you come from!

Algorithm Theory, WS 2015/16

Fabian Kuhn

-t)

-t)
-t)

-t)
-t)
-t)
-t)
-t)

3,31

10

Matrix-chain multiplication

Given: sequence (chain) m£IbCFB O & of matrices

Goal: compute the product 6, B &
C__ LD

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesizeif it is

e asingle matrix

e or the product of two fully parenthesized matrix products,
surrounded by parentheses.

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
f

FREIBURG

Example

UNI

FREIBURG

All possible fully parenthesized matrix products of the chain

D PO D . &

Algorithm Theory, WS 2015/16

Fabian Kuhn

12

UNI
f

FREIBURG

Different parenthesizations

Different parenthesizations correspond to different trees:

CRCRCED) (@ 8)(® 06))

(6 (® 8)5)) ((® 88)5)

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Number of different parenthesizations

UNI
FREIBURG

e LetD & bethe number of alternative parenthesizations of
the product0 t810 : X

viP) p

&) 0(Qiv ¢ Qh A&EItO ¢
V4

7 oo p Cé T e T

VD(E : \ : V|| —

¢ p 750 o= o)

0¢ p) 6 ¢ # AOATATAAOD

e Thus: Exhaustive search needs exponential time!

Algorithm Theory, WS 2015/16 Fabian Kuhn 14

Multiplying Two Matrices

UNI
FREIBURG

6 () h 6 (w) h 0i6 6 (0)
r ¢
Ey .) @,
O e Ter (e
- Fmssen's
r Remark:

Algorithm Matrix-Mult Using this algorithm, multiplying
Input: 1 1 matrix0, (1 1) matrix® two €3 & matrices requires €°
Output: N | matrix0 0t0 multiplications. This can also be

1 for Ch ptor)do

2 forCh ptoi do

3 O[AQh TT

4 for Qh ptordo

5 O[AQh S[AQ

done using 0 & .2—
multiplications.

O[AQT6 "™MQ

Number of multlgllcatlons and addition

Algorithm Theory, WS 2015/1

Fabian Kuhn 15

Matrix-chain multiplication: Example

UNI
f

FREIBURG

Computation of the product 0,00, where N
0,: (502 5) matrix ()() ()C :
O, : (52 100) matrix AN

O, : (1003 10) matrix (>

a) Parenthesization 0,0, O, and (0 (0 0)) require:

- $.10
6& 6pf‘)c . $6-S 10 = 28000 6 6 6 c Sloe |10 = Sceas
Coviso
6 6 . Sb-160-\O = $Poeco 6 6 L& S |p = 2500
Sum: 1S'e00 7 Seo

Algorithm Theory, WS 2015/16 Fabian Kuhn 16

o -
Structure of an Optimal Parenthesization .

UNI
FREIBURG

e Oy :optimal parenthesization of 0t8 t0

Forsomep Q ¢&:()z((

= g.
=

Any optimal solution contains optimal solutions for sub-problems
Assume matrix 0 isa (Q Q)-matrix

Cost to solve sub-problem 0,f8 {0 Wb 1 optimally: 6 JH
dn-:xdz o‘kydb

Lo

Then:

Algorithm Theory, WS 2015/16 Fabian Kuhn 17

Recursive Computation of Opt. Solution

UNI
FREIBURG

Compute O tO tO tO tO

@ pit_ Spft) Gy Qo) @rh
@ plt @ clo 6 oft)@ 1h >
@ plt G piv)G clw)G cfi DG cft)@ clo)@ ofv)@ T
G ot G) GG ot) G cw)Goft) @ oft)& T

Algorithm Theory, WS 2015/16 Fabian Kuhn 18

Using Meomization CQ,

FREIBURG

e
~

Compute O tO tO tO tO :

Compute0 t81t0 :
» Fach§ "QQ 'Q "Gs computed exactly once A U (¢) values
e Each ® "@Qdir. dependson 6 "AQ, & "MQfor Q _:_Q o)

Cost foreach & "@Q U & A overall time: |=(-)

——
' ’\.- ‘ . Z —_—
Algorithm Theory, WS 2015/16) Fabian Kuhn 19

Dynamic Programming

UNI
f

FREIBURG

a a S Y2 Adfdridcleding the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is
simply looked up and returned

(without repeated computation!).

o Computing the solutiarfor each sub-problem, store how the
value is obtained (according to which recursive rule).

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

Dynamic Programming

UNI

FREIBURG

Dynamic programming / memoization can be applied if

e Optimal solution contains optimal solutions to sub-problems
(recursive structure)

e Number of sub-problems that need to be considered is small

—

Algorithm Theory, WS 2015/16 Fabian Kuhn

21

Remarks about matrix-chain multiplication _

UNI
FREIBURG

1. There is an algorithm that determines an optimal
parenthesization in time

O(etl T&38

2. There is a linear time algorithm that determines a
parenthesization using at most

p® L O plre

multiplications.

Algorithm Theory, WS 2015/16 Fabian Kuhn 22

