
Chapter 3

Dynamic Programming

Algorithm Theory
WS 2015/16

Fabian Kuhn

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Weighted Interval Scheduling

•Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Each interval has a weight ◌

•Goal: Non-overlapping set of intervals of largest possible weight
–Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

•Example: Intervals are room requests of different importance

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 8

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Greedy Algorithms

Choose available request with earliest finishing time:

•Algorithm is not optimal any more
– It can even be arbitrarily bad…

•No greedy algorithm known that works

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 2

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Solving Weighted Interval Scheduling

• Interval Ὥ: start time ίὭ, finishing time: ὪὭ, weight: ύὭ

•Assume intervals ρȟȣȟὲ are sorted by increasing ὪὭ
–π Ὢρ Ὢς Ễ Ὢὲ, for convenience: Ὢπ π

•Simple observation:
Opt. solution contains interval ὲ or it doesn’t contain interval ὲ

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Solving Weighted Interval Scheduling

• Interval Ὥ: start time ίὭ, finishing time: ὪὭ, weight: ύὭ

•Assume intervals ρȟȣȟὲ are sorted by increasing ὪὭ
–π Ὢρ Ὢς Ễ Ὢὲ, for convenience: Ὢπ π

•Simple observation:
Opt. solution contains interval ὲ or it doesn’t contain interval ὲ

•Weight of optimal solution for only intervals ρȟȣȟὯ: ὡ Ὧ
Define ὴὯḧÍÁØὭɴ πȟȣȟὯ ρḊὪὭ ίὯ

•Opt. solution does not contain interval ὲ: ╦ ▪ ╦ ▪

Opt. solution contains interval ὲ: ╦ ▪ ◌▪ ╦ ▬▪

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Example

[0,5], w=2

[1,7], 4

[5,9], 4

[10,13], 1

[2,11], 5

[9,12], 2

Interval:

 ▬

▬

▬

▬

▬

▬

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Recursive Definition of Optimal Solution

•Recall:
–ὡ Ὧ: weight of optimal solution with intervals ρȟȣȟὯ

–ὴὯ: last interval to finish before interval Ὧ starts

•Recursive definition of optimal weight:

Ὧᶅ ρȡ ὡ Ὧ ÍÁØὡ Ὧ ρȟύὯ ὡ ὴὯ

 ὡ ρ ύρ

• Immediately gives a simple, recursive algorithm

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Running Time of Recursive Algorithm

 ▬

▬

▬

▬

▬

▬

ὡ φ

ὡ υ ὡ σ

ὡ τ ὡ σ ὡ ς ὡ ρ

ὡ σ

ὡ ς

ὡ ρ

ὡ ρ

ὡ ς ὡ ρ ὡ ρ

ὡ ρ

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Memoizing the Recursion

•Running time of recursive algorithm: exponential!

•But, alg. only solves ὲ different sub-problems: ὡ ρȟȣȟὡ ὲ

•There is no need to compute them multiple times

Memoization:

•Store already computed values for future use (recursive calls)

Efficient algorithm:

1. ὡ πḧπ; compute values ὴὭ

2. for Ὥḧρ to ὲ do

3. ὡ ὭḧÍÁØὡ Ὥ ρȟύὭ ὡ ὴὭ

4. end

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Example

Computing the schedule: store where you come from!

◌

◌

◌

◌

◌

◌

 ▬

▬

▬

▬

▬

▬

◌ ▬

◌ ▬

 ╦:

ὡ π ὡ ρ ὡ ς ὡ σ ὡ τ ὡ υ ὡ φ ὡ χ ὡ ψ

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Matrix-chain multiplication

Given: sequence (chain) àὃρȟὃςȟȣȟὃð of matrices

Goal: compute the product ὃρ Ö ὃς ÖȣÖ ὃ

Problem: Parenthesize the product in a way that minimizes
 the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

•a single matrix

•or the product of two fully parenthesized matrix products,
surrounded by parentheses.

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

All possible fully parenthesized matrix products of the chain
àὃρȟὃςȟὃσȟὃτð:

 ὃρ ὃς ὃσ ὃτ

 ὃρ ὃς ὃσ ὃτ

 ὃρ ὃς ὃσ ὃτ

 ὃρ ὃς ὃσ ὃτ

 ὃρ ὃς ὃσ ὃτ

Example

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Different parenthesizations

Different parenthesizations correspond to different trees:

ὃ ὃ ὃὃ

ὃ ὃὃ ὃ

ὃὃ ὃὃ

ὃὃ ὃ ὃ

Algorithm Theory, WS 2015/16 Fabian Kuhn 14

Number of different parenthesizations

•Let ὖὲ be the number of alternative parenthesizations of
the product ὃ ẗȣẗὃ :

•

ὖρ ρ

ὖὲ ὖὯẗὖὲ Ὧȟ ÆÏÒ ὲ ς

ὖὲ ρ
ρ

ὲ ρ
ςὲ
ὲ

τ

ὲ“ὲ
ὕ
τ

ὲ

ὖὲ ρ ὅ ὲ #ÁÔÁÌÁÎ ÎÕÍÂÅÒ

•Thus: Exhaustive search needs exponential time!

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

Multiplying Two Matrices

ὃ ὥ ȟ ὄ ὦ ȟ ὃẗὄ ὅ ὧ

ὧ ὥ ὦ

Algorithm Matrix-Mult

Input: ὴ ή matrix ὃ, ή ὶ matrix ὄ

Output: ὴ ὶ matrix ὅ ὃẗὄ
1 for Ὥḧρ to ὴ do
2 for Ὦḧρ to ὶ do
3 ὅὭȟὮḧπ;
4 for Ὧḧρ to ή do
5 ὅὭȟὮḧὅὭȟὮ ὃὭȟὯẗὄὯȟὮ

Number of multiplications and additions: ▬ Ö ▲ Ö ►

Remark:

Using this algorithm, multiplying
two ὲ ³ ὲ matrices requires ὲσ

multiplications. This can also be
done using ὕὲȢ
multiplications.

Algorithm Theory, WS 2015/16 Fabian Kuhn 16

Matrix-chain multiplication: Example

Computation of the product ὃρ ὃς ὃσ , where

ὃρ : (50 ³ 5) matrix

ὃς : (5 ³ 100) matrix

ὃσ : (100 ³ 10) matrix

a) Parenthesization ὃρ ὃςὃσ and ὃ ὃὃ require:

ὃᴂ ὃρ ὃς : ὃ ὃὃ :

ὃὃ : ὃὃᴂᴂ:

Sum:

Algorithm Theory, WS 2015/16 Fabian Kuhn 17

Structure of an Optimal Parenthesization

• ὃЉȣ : optimal parenthesization of ὃЉẗȣẗὃ

For some ρ Ὧ ὲ: ═ȣ▪ ═ȣ▓ ẗ═▓ ȣ▪

•Any optimal solution contains optimal solutions for sub-problems

•Assume matrix ὃ is a Ὠ Ὠ -matrix

•Cost to solve sub-problem ὃЉẗȣẗὃȟЉ ὶ optimally: ὅЉȟὶ

•Then:
╒╪ȟ╫ □░▪

╪▓ ╫
╒╪ȟ▓ ╒▓ ȟ╫ ▀╪ ▀▓▀╫

╒╪ȟ╪

Algorithm Theory, WS 2015/16 Fabian Kuhn 18

Recursive Computation of Opt. Solution

Compute ὃẗὃ ẗὃ ẗὃ ẗὃ :

ὅρȟυ

ὅρȟς ὅρȟσ ὅρȟτ ὅςȟυ

ὅςȟσ ὅρȟς

ὅσȟυ ὅτȟυ

ὅρȟσ ὅρȟς ὅςȟτ ὅςȟσ ὅςȟσ ὅςȟτ ὅτȟυ ὅσȟυ

ὅτȟυ ὅσȟτ

ὅςȟσ ὅρȟς ὅσȟτ ὅςȟσ ὅσȟτ ὅςȟσ ὅτȟυ ὅσȟτ

Algorithm Theory, WS 2015/16 Fabian Kuhn 19

Using Meomization

Compute ὃẗὃ ẗὃ ẗὃ ẗὃ :

Compute ὃẗȣẗὃ :

•Each ὅὭȟὮ, Ὥ Ὦ is computed exactly once Ą ὕὲ values

•Each ὅὭȟὮ dir. depends on ὅὭȟὯ, ὅὯȟὮ for Ὥ Ὧ Ὦ

Cost for each ὅὭȟὮ: ὕὲ Ą overall time: ╞▪

ὅρȟς ὅςȟσ ὅσȟτ ὅτȟυ

ὅρȟσ ὅςȟτ ὅσȟυ

ὅρȟτ ὅςȟυ

ὅρȟυ

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

αaŜƳƻƛȊŀǘƛƻƴά for increasing the efficiency of a recursive solution:

•Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is
simply looked up and returned
 (without repeated computation!).

•Computing the solution: For each sub-problem, store how the
value is obtained (according to which recursive rule).

Dynamic Programming

Algorithm Theory, WS 2015/16 Fabian Kuhn 21

Dynamic Programming

Dynamic programming / memoization can be applied if

•Optimal solution contains optimal solutions to sub-problems
(recursive structure)

•Number of sub-problems that need to be considered is small

Algorithm Theory, WS 2015/16 Fabian Kuhn 22

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal
parenthesization in time

ὕὲẗÌÏÇὲȢ

2. There is a linear time algorithm that determines a
parenthesization using at most

ρȢρυυẗὅρȟὲ

multiplications.

