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Weighted Interval Scheduling 

•Given: Set of intervals, e.g. 
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14] 

• Each interval has a weight ◌ 

 

 

 

 

 

 

 
 

•Goal: Non-overlapping set of intervals of largest possible weight 
–Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping 

 

•Example: Intervals are room requests of different importance 

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[0,10], 1 

[1,3], 1 

[1,4], 10 

[3,5], 2 

[4,7], 5 

[5,8], 1 

[11,14], 5 

[5,12], 25 

[8,10], 1 [12,14], 1 

[7,9], 4 [9,12], 8 
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Greedy Algorithms 

Choose available request with earliest finishing time: 

 

 

 

 

 

 

 

•Algorithm is not optimal any more 
– It can even be arbitrarily bad… 

 

•No greedy algorithm known that works 

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 

[0,10], 1 

[1,3], 1 

[1,4], 10 

[3,5], 2 

[4,7], 5 

[5,8], 1 

[11,14], 5 

[5,12], 25 

[8,10], 1 [12,14], 1 

[7,9], 4 [9,12], 2 
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Solving Weighted Interval Scheduling 

• Interval Ὥ: start time ίὭ, finishing time: ὪὭ, weight: ύὭ 
 

•Assume intervals ρȟȣȟὲ are sorted by increasing ὪὭ 
–π Ὢρ Ὢς Ễ Ὢὲ, for convenience: Ὢπ π  

 

•Simple observation: 
Opt. solution contains interval ὲ or it doesn’t contain interval ὲ 
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Solving Weighted Interval Scheduling 

• Interval Ὥ: start time ίὭ, finishing time: ὪὭ, weight: ύὭ 
 

•Assume intervals ρȟȣȟὲ are sorted by increasing ὪὭ 
–π Ὢρ Ὢς Ễ Ὢὲ, for convenience: Ὢπ π  

 

•Simple observation: 
Opt. solution contains interval ὲ or it doesn’t contain interval ὲ 
 

•Weight of optimal solution for only intervals ρȟȣȟὯ: ὡ Ὧ 
Define ὴὯḧÍÁØὭɴ πȟȣȟὯ ρḊὪὭ ίὯ  
 

•Opt. solution does not contain interval ὲ: ╦ ▪ ╦ ▪  
 

Opt. solution contains interval ὲ: ╦ ▪ ◌▪ ╦ ▬▪  
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Example 

 

 

 

 

 

 

 

 

 

 

 

[0,5], w=2 

[1,7], 4 

[5,9], 4 

[10,13], 1 

[2,11], 5 

[9,12], 2 

 

Interval: 

 

 

 

 

 ▬  

▬  

▬  

▬  

▬  

▬  
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Recursive Definition of Optimal Solution 

•Recall: 
–ὡ Ὧ: weight of optimal solution with intervals ρȟȣȟὯ 

–ὴὯ: last interval to finish before interval Ὧ starts 
 

•Recursive definition of optimal weight: 
 

Ὧᶅ ρȡ ὡ Ὧ ÍÁØὡ Ὧ ρȟύὯ ὡ ὴὯ  
    

                 ὡ ρ ύρ 

 

• Immediately gives a simple, recursive algorithm 
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Running Time of Recursive Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ▬  

▬  

▬  

▬  

▬  

▬  

ὡ φ 

ὡ υ ὡ σ 

ὡ τ ὡ σ ὡ ς ὡ ρ 

ὡ σ 

ὡ ς 

ὡ ρ 

ὡ ρ 

ὡ ς ὡ ρ ὡ ρ 

ὡ ρ 
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Memoizing the Recursion 

•Running time of recursive algorithm: exponential! 
 

•But, alg. only solves ὲ different sub-problems: ὡ ρȟȣȟὡ ὲ 
 

•There is no need to compute them multiple times 
 

Memoization:  

•Store already computed values for future use (recursive calls) 
 

Efficient algorithm: 

1.  ὡ πḧπ; compute values ὴὭ 

2.  for Ὥḧρ to ὲ do 

3.        ὡ ὭḧÍÁØὡ Ὥ ρȟύὭ ὡ ὴὭ  

4.  end 
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Example 

 

 

 

 

 

 

 

 

 

 

 
 

Computing the schedule: store where you come from! 

◌  

◌  

◌  

◌  

◌  

◌  

 

 

 

 

 

 ▬  

▬  

▬  

▬  

▬  

▬  

◌   ▬  

◌   ▬  

  ╦:                 

ὡ π ὡ ρ ὡ ς ὡ σ ὡ τ ὡ υ ὡ φ ὡ χ ὡ ψ 
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Matrix-chain multiplication 

Given:  sequence (chain)  àὃρȟὃςȟȣȟὃð  of matrices 
 

Goal:    compute the product ὃρ Ö ὃς ÖȣÖ ὃ  

 

Problem: Parenthesize the product in a way that minimizes 
     the number of scalar multiplications.  

 

Definition: A product of matrices is fully parenthesized if it is  

•a single matrix  

•or the product of two fully parenthesized matrix products, 
surrounded by parentheses. 
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All possible fully parenthesized matrix products of the chain 
àὃρȟὃςȟὃσȟὃτð: 

 
 ὃρ  ὃς  ὃσ ὃτ    

 
 ὃρ   ὃς ὃσ  ὃτ   

 
  ὃρ ὃς  ὃσ ὃτ   

 
  ὃρ  ὃς ὃσ   ὃτ  

 
   ὃρ ὃς  ὃσ  ὃτ  

 

Example 
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Different parenthesizations 

 

Different parenthesizations correspond to different trees: 

ὃ ὃ ὃὃ  

ὃ ὃὃ ὃ  

ὃὃ ὃὃ  

ὃὃ ὃ ὃ  
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Number of different parenthesizations 

•Let ὖὲ be the number of alternative parenthesizations of 
the product ὃ ẗȣẗὃ : 

•   

ὖρ ρ 

ὖὲ ὖὯẗὖὲ Ὧȟ ÆÏÒ ὲ ς 

  

ὖὲ ρ
ρ

ὲ ρ
ςὲ
ὲ

τ

ὲ“ὲ
ὕ
τ

ὲ
 

  

ὖὲ ρ ὅ        ὲ  #ÁÔÁÌÁÎ ÎÕÍÂÅÒ 
 

•Thus: Exhaustive search needs exponential time! 
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Multiplying Two Matrices 

ὃ ὥ  ȟ  ὄ ὦ  ȟ ὃẗὄ ὅ ὧ  
 

ὧ ὥ ὦ  

 
 
 

Algorithm Matrix-Mult 

Input:     ὴ ή matrix ὃ, ή ὶ matrix ὄ 

Output:  ὴ ὶ matrix ὅ ὃẗὄ 
1  for Ὥḧρ to ὴ do 
2      for Ὦḧρ to ὶ do 
3           ὅὭȟὮḧπ; 
4           for Ὧḧρ to ή do 
5        ὅὭȟὮḧὅὭȟὮ ὃὭȟὯẗὄὯȟὮ 
 

Number of multiplications and additions: ▬ Ö ▲ Ö ►  

Remark:  
 

Using this algorithm, multiplying 
two ὲ ³ ὲ matrices requires ὲσ 

multiplications. This can also be 
done using ὕὲȢ  
multiplications. 
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Matrix-chain multiplication: Example 

Computation of the product ὃρ ὃς ὃσ , where 
 

ὃρ : (50 ³ 5) matrix 

ὃς : (5 ³ 100) matrix 

ὃσ : (100 ³ 10) matrix 
 

a) Parenthesization ὃρ ὃςὃσ  and ὃ ὃὃ  require: 

 

ὃᴂ  ὃρ ὃς :                                 ὃ ὃὃ : 
 

ὃὃ :                                                ὃὃᴂᴂ: 

 

Sum: 



Algorithm Theory, WS 2015/16 Fabian Kuhn 17 

Structure of an Optimal Parenthesization 

• ὃЉȣ : optimal parenthesization of ὃЉẗȣẗὃ  
 

For some ρ Ὧ ὲ: ═ȣ▪ ═ȣ▓ ẗ═▓ ȣ▪  
 

•Any optimal solution contains optimal solutions for sub-problems 
 

•Assume matrix ὃ is a Ὠ Ὠ -matrix 
 

•Cost to solve sub-problem ὃЉẗȣẗὃȟЉ ὶ optimally: ὅЉȟὶ 
 

•Then: 
╒╪ȟ╫ □░▪

╪▓ ╫
╒╪ȟ▓ ╒▓ ȟ╫ ▀╪ ▀▓▀╫ 

  

╒╪ȟ╪  
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Recursive Computation of Opt. Solution 

Compute ὃẗὃ ẗὃ ẗὃ ẗὃ : 

ὅρȟυ 

ὅρȟς ὅρȟσ ὅρȟτ ὅςȟυ 

ὅςȟσ ὅρȟς 

ὅσȟυ ὅτȟυ 

ὅρȟσ ὅρȟς ὅςȟτ ὅςȟσ ὅςȟσ ὅςȟτ ὅτȟυ ὅσȟυ 

ὅτȟυ ὅσȟτ 

ὅςȟσ ὅρȟς ὅσȟτ ὅςȟσ ὅσȟτ ὅςȟσ ὅτȟυ ὅσȟτ 
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Using Meomization 

Compute ὃẗὃ ẗὃ ẗὃ ẗὃ : 

 

 

 

 

 

 

 

Compute ὃẗȣẗὃ : 
 

•Each ὅὭȟὮ, Ὥ Ὦ is computed exactly once Ą ὕὲ  values 

•Each ὅὭȟὮ dir. depends on ὅὭȟὯ, ὅὯȟὮ for Ὥ Ὧ Ὦ 
 

Cost for each ὅὭȟὮ: ὕὲ Ą overall time: ╞▪  

ὅρȟς ὅςȟσ ὅσȟτ ὅτȟυ 

ὅρȟσ ὅςȟτ ὅσȟυ 

ὅρȟτ ὅςȟυ 

ὅρȟυ 
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αaŜƳƻƛȊŀǘƛƻƴά for increasing the efficiency of a recursive solution: 

 

•Only the first time a sub-problem is encountered, its solution is 
computed and then stored in a table. Each subsequent time that 
the subproblem is encountered, the value stored in the table is 
simply looked up and returned 
                                                  (without repeated computation!). 

 

•Computing the solution: For each sub-problem, store how the 
value is obtained (according to which recursive rule). 

Dynamic Programming 
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Dynamic Programming 

Dynamic programming / memoization can be applied if 

 

•Optimal solution contains optimal solutions to sub-problems 
(recursive structure) 

 

•Number of sub-problems that need to be considered is small 
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Remarks about matrix-chain multiplication  

 

1. There is an algorithm that determines an optimal 
parenthesization in time  
 

ὕὲẗÌÏÇὲȢ 

 

2. There is a linear time algorithm that determines a 
parenthesization using at most  
 

ρȢρυυẗὅρȟὲ 
 

multiplications. 
 

 


