

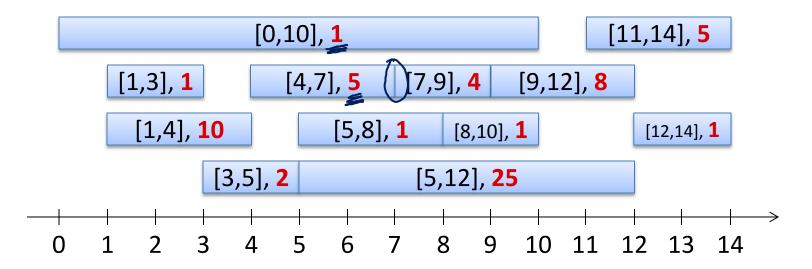
Chapter 3 Dynamic Programming

Algorithm Theory WS 2015/16

Fabian Kuhn

Weighted Interval Scheduling

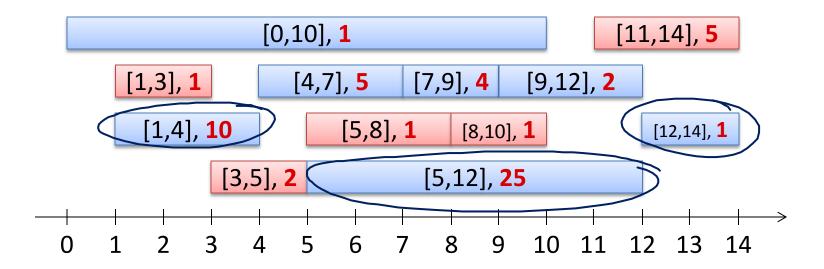
- Given: Set of intervals, e.g.
 [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]
- Each interval has a weight w



- Goal: Non-overlapping set of intervals of largest possible weight
 - Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping
- Example: Intervals are room requests of different importance

Greedy Algorithms

Choose available request with earliest finishing time:



- Algorithm is not optimal any more
 - It can even be arbitrarily bad...
- No greedy algorithm known that works

Solving Weighted Interval Scheduling

- Interval \underline{i} : start time $\underline{s(i)}$, finishing time: $\underline{f(i)}$, weight: $\underline{w(i)}$
- Assume intervals 1, ..., n are sorted by increasing f(i)
 - $-0 < \underline{f(1)} \le \underline{f(2)} \le \cdots \le \underline{f(n)}$, for convenience: $\underline{f(0)} = 0$
- Simple observation:

1,2,3, --, w-1, w

Opt. solution contains interval n or it doesn't contain interval n

- opt. solution doesh't contain int. n

- sopt. sol. for intervals \..., u is the same as theopt. sol. for int. \..., n-1

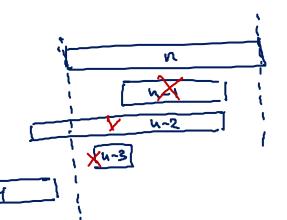
- opt. solution contains interval u

in example:

opt. sol. is composed of

opt. sol. for intervals 1,..., N-4

and interval N

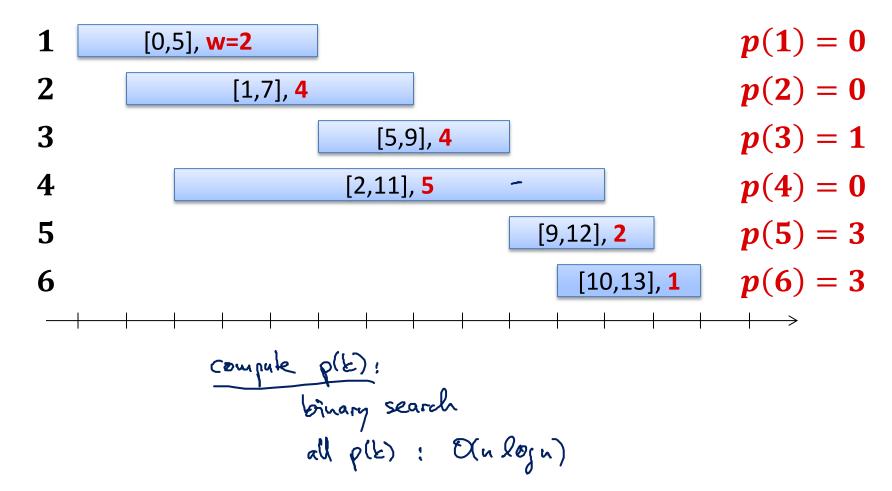


Solving Weighted Interval Scheduling

- Interval i: start time s(i), finishing time: f(i), weight: w(i)
- Assume intervals 1, ..., n are sorted by increasing f(i)
 - $-0 < f(1) \le f(2) \le \cdots \le f(n)$, for convenience: f(0) = 0
- Simple observation: Opt. solution contains interval n or it doesn't contain interval n
- Weight of optimal solution for only intervals 1, ..., k: W(k)Define $p(k) \coloneqq \max\{i \in \{0, ..., k-1\} : f(i) \le s(k)\}$
- Opt. solution does not contain interval n: $\underline{W(n)} = \underline{W(n-1)}$ Opt. solution contains interval n: $\underline{W(n)} = \underline{w(n)} + \underline{W(p(n))}$ $W(n) = \max \frac{2}{3} W(n-1), \ w(n) + W(p(n)) \frac{2}{3}$

Example

Interval:



Recursive Definition of Optimal Solution

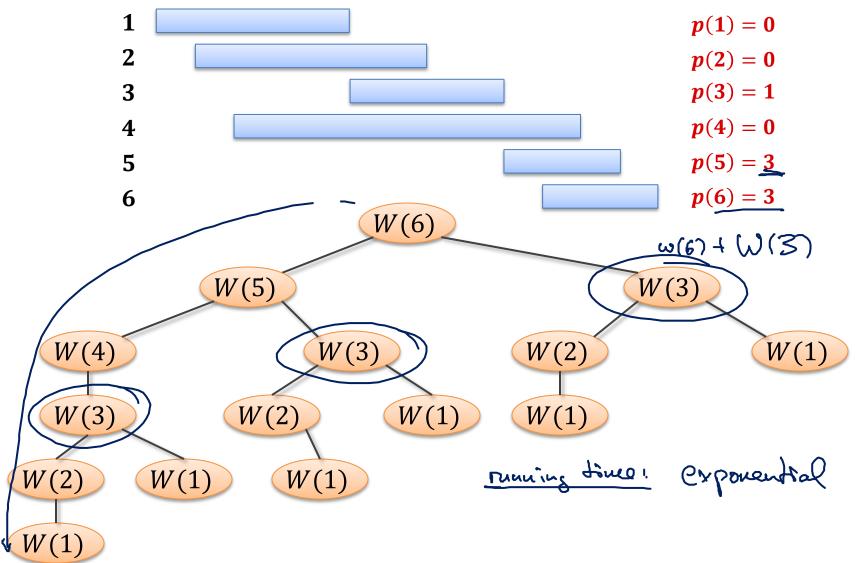
- Recall:
 - -W(k): weight of optimal solution with intervals 1, ..., k
 - -p(k): last interval to finish before interval k starts
- Recursive definition of optimal weight:

$$\forall k > 1: \ \underline{W(k)} = \max\{\underline{W(k-1)}, \underline{w(k)} + \underline{W(p(k))}\}$$

$$\underline{W(1)} = w(1) \qquad \qquad (0) = 0$$

Immediately gives a simple, recursive algorithm

Running Time of Recursive Algorithm



Memoizing the Recursion

- Running time of recursive algorithm: exponential!
- But, alg. only solves n different sub-problems: W(1), ..., W(n)
- There is no need to compute them multiple times

Memoization:

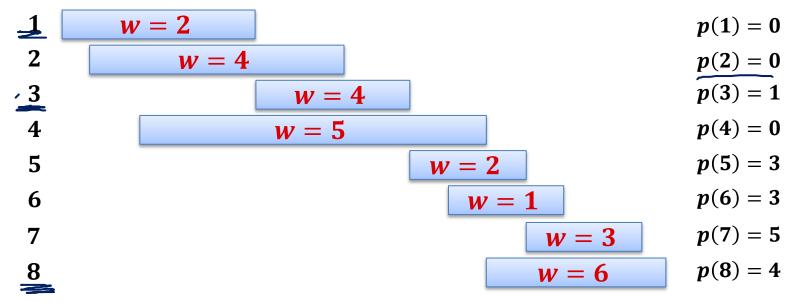
Store already computed values for future use (recursive calls)

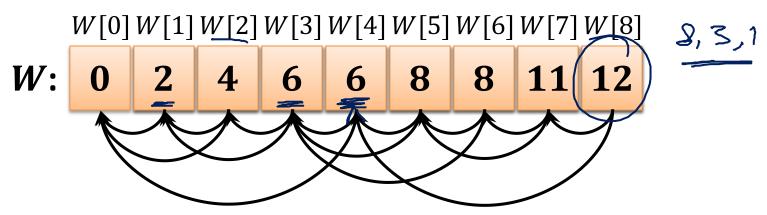
Efficient algorithm:

- 1. W[0] := 0; compute values p(i)
- 2. for $i \coloneqq 1$ to n do
- 3. $W[i] := \max\{W[i-1], w(i) + W[p(i)]\}$
- 4. end

O(n) time

Example





Computing the schedule: store where you come from!

Matrix-chain multiplication

Given: sequence (chain) $\langle A_1, A_2, ..., A_n \rangle$ of matrices

Goal: compute the product $A_1 \cdot A_2 \cdot ... \cdot A_n$

Problem: Parenthesize the product in a way that minimizes the number of scalar multiplications.

Definition: A product of matrices is *fully parenthesized* if it is

- a single matrix
- or the product of two fully parenthesized matrix products, surrounded by parentheses.

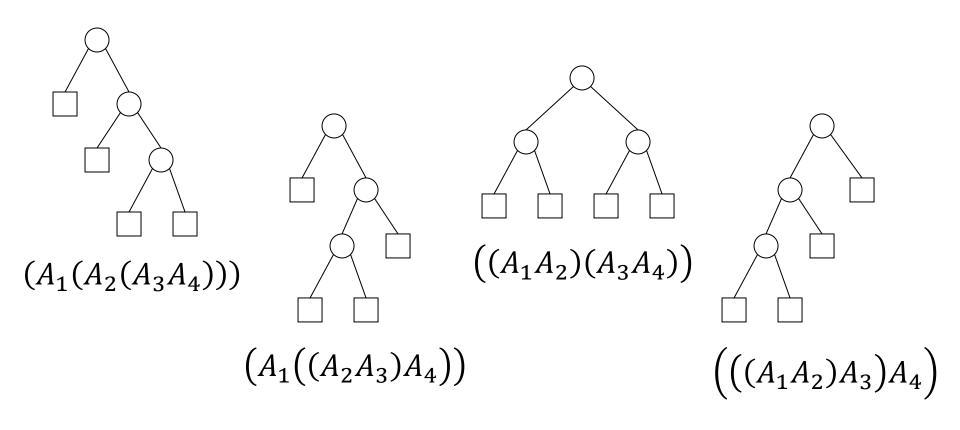
Example

All possible fully parenthesized matrix products of the chain $\langle A_1, A_2, A_3, A_4 \rangle$:

$$(A_{1}(A_{2}(A_{3}A_{4})))$$
 $(A_{1}(A_{2}(A_{3}A_{4})))$
 $(A_{1}((A_{2}A_{3})A_{4}))$
 $((A_{1}A_{2})(A_{3}A_{4}))$
 $((A_{1}(A_{2}A_{3})A_{4}))$
 $(((A_{1}A_{2})A_{3})A_{4})$

Different parenthesizations

Different parenthesizations correspond to different trees:



Number of different parenthesizations

• Let P(n) be the number of alternative parenthesizations of the product $A_1 \cdot ... \cdot A_n$:

$$P(1) = 1$$

$$P(n) = \sum_{k=1}^{n-1} P(k) \cdot P(n-k), \quad \text{for } n \ge 2$$

$$P(n+1) = \frac{1}{n+1} {2n \choose n} \approx \frac{4^n}{n\sqrt{\pi n}} + O\left(\frac{4^n}{\sqrt{n^5}}\right)$$

$$P(n+1) = C_n \quad (n^{th} \text{ Catalan number})$$

Thus: Exhaustive search needs exponential time!

Multiplying Two Matrices

$$A = (a_{ij})_{p \times q}, \qquad B = (b_{ij})_{q \times r}, \qquad A \cdot B = C = (c_{ij})_{p \times r}$$

$$(A) = (a_{ij})_{p \times q}, \qquad C_{ij} = \sum_{k=1}^{\infty} a_{ik} b_{kj} \qquad (A) = (c_{ij})_{p \times r}$$

Algorithm *Matrix-Mult*

Input: $(p \times q)$ matrix A, $(q \times r)$ matrix B

Output: $(p \times r)$ matrix $C = A \cdot B$

1 for i := 1 to p do

for j := 1 to r do

3 $C[i,j] \coloneqq 0$;

4 for k := 1 to q do

 $C[i,j] := C[i,j] + A[i,k] \cdot B[k,j]$

Remark:

Using this algorithm, multiplying two $(n \times n)$ matrices requires n^3 multiplications. This can also be done using $O(n^{2.376})$ multiplications.

Number of multiplications and additions: Algorithm Theory, WS 2015/16 Fabian Kuhn

Matrix-chain multiplication: Example

Computation of the product $A_1 A_2 A_3$, where

$$A_1: (\underline{50} \times \underline{5}) \text{ matrix}$$
 $A_2: (5 \times \underline{100}) \text{ matrix}$
 $A_3: (\underline{100} \times \underline{10}) \text{ matrix}$

a) Parenthesization $((A_1A_2)A_3)$ and $(A_1(A_2A_3))$ require:

$$A' = (A_1 A_2)$$
: 50.5.100 = 25000

$$A' = (A_1 A_2)$$
: 50.5.100 = 25000 $A'' = (A_2 A_3)$: 5.100.10 = 5000

SOLIBO

$$A_1A''$$
: 50.5.10 = 2500

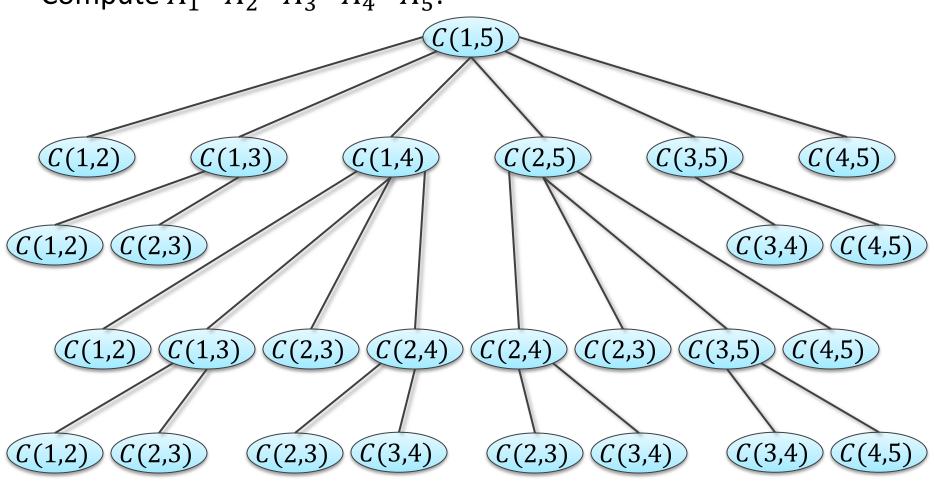
Sum:

Structure of an Optimal Parenthesization

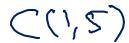
- $(\underline{A_{\ell \dots r}})$: optimal parenthesization of $\underline{A_{\ell} \cdot \dots \cdot A_{r}}$ For some $1 \le k < n$: $(\underline{A_{1 \dots n}}) \equiv ((\underline{A_{1 \dots k}}) \stackrel{\downarrow}{\leftarrow} (\underline{A_{k+1 \dots n}}))$
- Any optimal solution contains optimal solutions for sub-problems
- Assume matrix A_i is a $(d_{i-1} \times d_i)$ -matrix
- Cost to solve sub-problem $A_{\ell} \cdot ... \cdot A_{r}$, $\ell \leq r$ optimally: $\underline{C(\ell, r)}$
- Then: $C(a,b) = \min_{a \le k < b} C(a,k) + C(k+1,b) + d_{a-1}d_k d_b$ C(a,a) = 0 $C(a,b) = \min_{a \le k < b} C(a,k) + C(k+1,b) + C(k+1,$

Recursive Computation of Opt. Solution

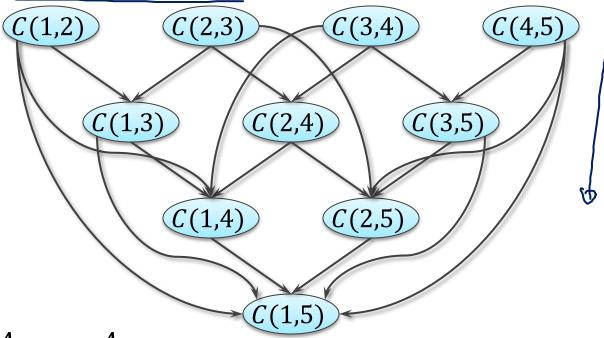
Compute $A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5$:



Using Meomization



Compute $A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5$:



Compute $A_1 \cdot ... \cdot A_n$:

- Each C(i,j), i < j is computed exactly once $\rightarrow O(n^2)$ values
- Each C(i,j) dir. depends on C(i,k), C(k,j) for $i < \underline{k} < j$

Cost for each C(i,j): $O(n) \rightarrow$ overall time: $O(n^3)$

Dynamic Programming

"Memoization" for increasing the efficiency of a recursive solution:

 Only the <u>first time</u> a sub-problem is encountered, its <u>solution</u> is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned

(without repeated computation!).

• <u>Computing the solution</u>: For each <u>sub-problem</u>, store how the value is obtained (according to which recursive rule).

Dynamic Programming

Dynamic programming / memoization can be applied if

- Optimal solution contains optimal solutions to sub-problems (recursive structure)
- Number of sub-problems that need to be considered is small

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal parenthesization in time

$$O(n \cdot \log n)$$
.

2. There is a linear time algorithm that determines a parenthesization using at most

$$1.155 \cdot C(1,n)$$

multiplications.