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Weighted Interval Scheduling
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e Given: Set of intervals, e.g.

[0,10],[1,3],[1,4],[3,5],14,7],15,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

e Eachinterval has a weight <
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[5,8], 1 [8,10], 1 [12,14], 1

[3,5], 2

[5,12], 25

6 7 8

9

10 11 12 13 14

 Goal: Non-overlapping set of intervals of largest possible weight

— Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

e Example: Intervals are room requests of different importance

Algorithm Theory, WS 2015/16

Fabian Kuhn



Greedy Algorithms

Choose available request with earliest finishing time:

[0,10], 1 [11,14], 5
[1,3], 1 [4,71,5 |[7,9],4| [9,12],2
C 24,10 P [ 58,1 |su0,1 @
3,5],2 [5,12], 25 \‘3
o—
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o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e Algorithm is not optimal any more

— It can even be arbitrarily bad...

 No greedy algorithm known that works
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Solving Weighted Interval Scheduling
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* Interval start time i 'Q finishing time: "Q'Q weight: 0 "Q

 Assume intervals pi8 F are sorted by increasing "QQ
— 11 "Wp) "Fc) E  "Q¢ , for convenience: @D T
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e Simple observation: =
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Solving Weighted Interval Scheduling ;

e Interval ‘Qstarttimei "Q finishing time: "Q"Q weight: 0 "Q

 Assume intervals pi8 F are sorted by increasing "QQ

— 1 "@p) W) E Q¢ ,for convenience: @) T
g p——
Lt

e Simple observation:
Opt. solution contains interval € or it doesn’t contain interval €

i

S
* Weight of optimal solution for only intervals pf8 hQ w (Q
DefineN(Q h | Af@ {8 hQ p} DAQP (0}

e Opt. solution does not contain interval € T (=) (= )

Opt. solution contains interval é:—-”; ) o(m) T k)
(A)(u) = WaX g(/\)(v‘-()/ W) + w(‘?c"@g
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Example %%
Interval:
[0,5], w=2 -t )
[1,7], 4 - )
[5,9], 4 - )
[2,11], 5 = - )
[9,12], 2 -t )
[10,13], 1 -r )
\o’imv searcda

| ?(E) .0 Q@JM)
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Recursive Definition of Optimal Solution
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e Recall:
—  "Q: weight of optimal solution with intervals pf8 hQ
— N(Q: last interval to finish before interval Ostarts

e Recursive definition of optimal weight: J
1 pdo(Q | A PR (0 o (1(Q))
wpP) vp Won=0

 Immediately gives a simple, recursive algorithm
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Running Time of Recursive Algorithm
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 Running time of recursive algorithm: exponential!

A 4

e But, alg. only solves £ different sub-problems: & (p)8 ho €

 There is no need to compute them multiple times

Memoization:
e Store already computed values for future use (recursive calls)

L
Efficient algorithm: 21-1 - & %) '\
) v

1. @[] h 1T compute values 1] “Q ’
qc"_' —_——

2. for'(h ptoc do

3. @[QRh | A@B[Q pl (R & (R} | O Hue

—— = ___—3

4. end
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Computing the schedule: store where you come from!
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Matrix-chain multiplication

Given: sequence (chain) m£IbCFB O & of matrices

Goal: compute the product 6, B &
C__ LD

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesizeif it is

e asingle matrix

e or the product of two fully parenthesized matrix products,
surrounded by parentheses.
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Example
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All possible fully parenthesized matrix products of the chain

D PO D . &
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Different parenthesizations

Different parenthesizations correspond to different trees:

CRCRCED) (@ 8)(® 06))

(6 (® 8)5)) ((® 88 )5 )
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Number of different parenthesizations
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e LetD & bethe number of alternative parenthesizations of
the product0 t810 : X

viP) p

&) 0(Qiv ¢ Qh A&EItO ¢
V4

7 oo p Cé T e T

VD(E : \ : V|| —

¢ p 750 o= o)

0¢ p) 6 ¢ # AOATATAAOD

e Thus: Exhaustive search needs exponential time!
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Multiplying Two Matrices
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6 () h 6 (w) h 0i6 6 (0)
r ¢
Ey . ) @,
O e Ter (e
- Fmssen's
r Remark:

Algorithm Matrix-Mult Using this algorithm, multiplying
Input: 1 1 matrix0, (1 1) matrix® two €3 & matrices requires €°
Output: N | matrix0 0t0 multiplications. This can also be

1 for Ch ptor)do

2 forCh ptoi do

3 O[AQh TT

4 for Qh ptordo

5 O[AQh S[AQ

done using 0 & .2—
multiplications.

O[AQT6 "™MQ

Number of multlgllcatlons and addition
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Matrix-chain multiplication: Example
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Computation of the product 0,00, where N
0,: (502 5) matrix ( )( ) ( )C :
O, : (52 100) matrix AN

O, : (1003 10) matrix ( >

a) Parenthesization 0,0, O, and (0 (0 0 )) require:

- $ .10
6& 6pf‘)c . $6-S 10 = 28000 6 6 6 c Sloe |10 = Sceas
Coviso
6 6 . Sb-160-\O = $Poeco 6 6 L& S |p = 2500
Sum: 1S'e00 7 Seo
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Structure of an Optimal Parenthesization .
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e Oy :optimal parenthesization of 0t8 t0

Forsomep Q ¢&:( )z((

= g.
=

Any optimal solution contains optimal solutions for sub-problems
Assume matrix 0 isa (Q Q)-matrix

Cost to solve sub-problem 0,f8 {0 Wb 1 optimally: 6 JH
dn-:xdz o‘kydb

Lo

Then:
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Recursive Computation of Opt. Solution
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Compute O tO tO tO tO

@ pit_ Spft ) Gy Qo) @rh
@ plt @ clo 6 oft )@ 1h >
@ plt G piv )G clw )G cfi DG cft )@ clo )@ ofv )@ T
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Using Meomization CQ,

FREIBURG

e
~

Compute O tO tO tO tO :

Compute0 t81t0 :
» Fach§ "QQ 'Q "Gs computed exactly once A U (¢ ) values
e Each ® "@Qdir. dependson 6 "AQ, & "MQfor Q _:_Q o)

Cost foreach & "@Q U & A overall time: |=(- )

——
' ’\.- ‘ . Z —_—
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Dynamic Programming
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a a S Y2 Adfdridcleding the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is
simply looked up and returned

(without repeated computation!).

o Computing the solutiarfor each sub-problem, store how the
value is obtained (according to which recursive rule).
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Dynamic Programming
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Dynamic programming / memoization can be applied if

e Optimal solution contains optimal solutions to sub-problems
(recursive structure)

e Number of sub-problems that need to be considered is small

—
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Remarks about matrix-chain multiplication _
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1. There is an algorithm that determines an optimal
parenthesization in time

O(etl T&38

2. There is a linear time algorithm that determines a
parenthesization using at most

p® L O plre

multiplications.
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