

Chapter 3 Dynamic Programming

Algorithm Theory WS 2015/16

Fabian Kuhn

Given: Two strings
$$A = a_1 a_2 \dots a_m$$
 and $B = b_1 b_2 \dots b_n$

Goal: Determine the minimum number D(A, B) of edit operations required to transform A into B

Edit operations:

- a) **Replace** a character from string *A* by a character from *B*
- **b) Delete** a character from string *A*
- c) Insert a character from string *B* into *A*

Edit Distance – Cost Model C(a, a) = O

- Cost for **replacing** character a by $b: c(a, b) \ge 0$
- Capture insert, delete by allowing $a = \varepsilon$ or $b = \varepsilon$:
 - Cost for **deleting** character $a: c(a, \varepsilon)$
 - Cost for inserting character b: c(ɛ, b)
- Triangle inequality:

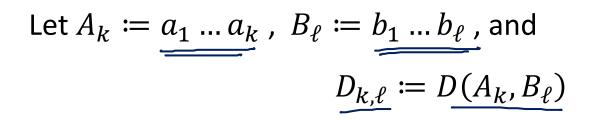
 $c(a,c) \le c(a,b) + c(b,c)$

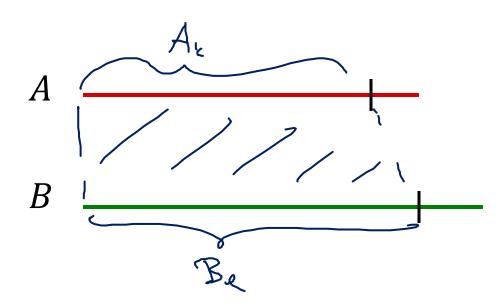
 \rightarrow each character is changed at most once!

• Unit cost model: $c(a, b) = \begin{cases} 1, & \text{if } a \neq b \\ 0, & \text{if } a = b \end{cases}$

3

Computation of the Edit Distance



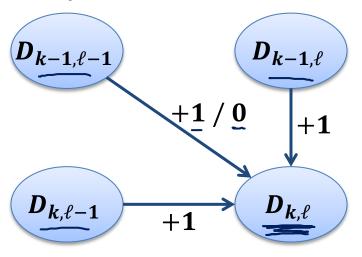


Computing the Edit Distance

• Recurrence relation (for $k, \ell \geq 1$)

$$D_{k,\ell} = \min \left\{ \begin{matrix} D_{k-1,\ell-1} + c(a_k, b_\ell) \\ D_{k-1,\ell} + c(a_k, \varepsilon) \\ D_{k,\ell-1} + c(\varepsilon, b_\ell) \end{matrix} \right\} = \min \left\{ \begin{matrix} D_{k-1,\ell-1} + 1 / 0 \\ D_{k-1,\ell} + 1 \\ D_{k,\ell-1} + 1 \end{matrix} \right\}$$
unit cost model

• Need to compute $D_{i,j}$ for all $0 \le i \le k$, $0 \le j \le \ell$:



Algorithm Theory, WS 2015/16

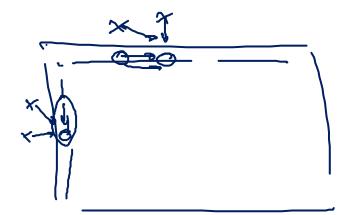
Recurrence Relation for the Edit Distance

Base cases:

$$\underbrace{D_{0,0}}_{D_{0,j}} = D(\varepsilon, \varepsilon) = 0$$

$$\underbrace{D_{0,j}}_{D_{0,j}} = D(\varepsilon, B_j) = D_{0,j-1} + c(\varepsilon, b_j)$$

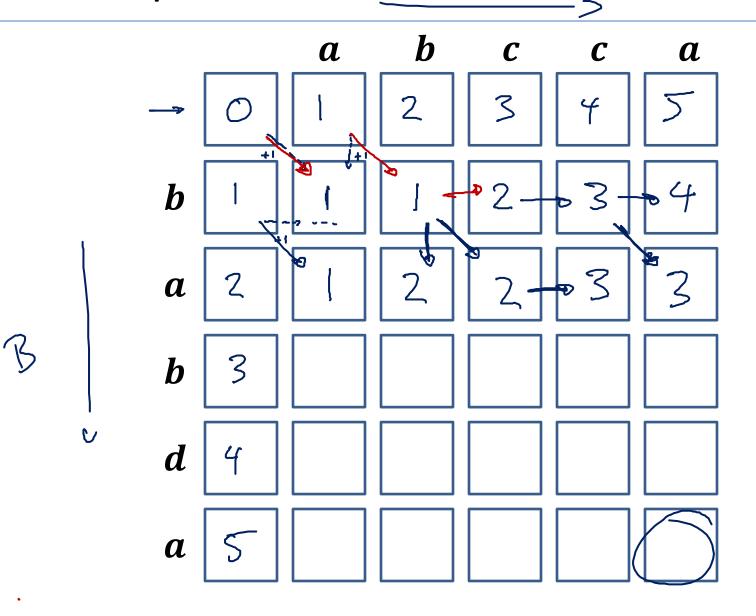
$$\underbrace{D_{i,0}}_{D_{i,0}} = D(A_i, \varepsilon) = D_{i-1,0} + c(a_i, \varepsilon)$$



Recurrence relation:

$$D_{i,j} = \min \begin{cases} D_{k-1,\ell-1} + c(a_k, b_\ell) \\ D_{k-1,\ell} + c(a_k, \varepsilon) \\ D_{k,\ell-1} + c(\varepsilon, b_\ell) \end{cases}$$

Example



.

A

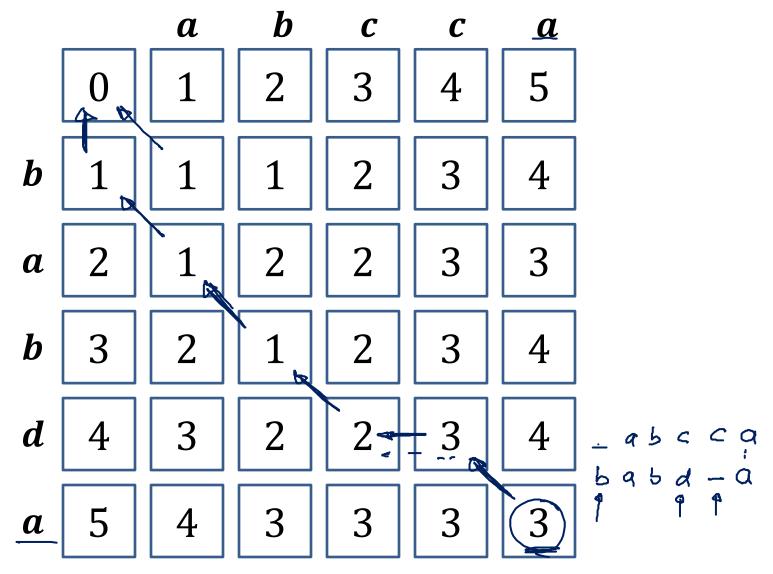
Computing the Edit Operations

Algorithm Edit-Operations(i, j) Input: matrix D (already computed) Output: list of edit operations

- 1 if i = 0 and j = 0 then return empty list
- 2 if $i \neq 0$ and D[i, j] = D[i 1, j] + 1 then 2 notwork Edit Organizations $(i - 1, j) \in delete$
- 3 **return** *Edit-Operations* $(i 1, j) \circ$ "delete a_i "
- 4 else if $j \neq 0$ and D[i,j] = D[i,j-1] + 1 then
- 5 **return** *Edit-Operations*(i, j 1) ° "insert b_j "
- 6 else // $D[i,j] = D[i-1,j-1] + c(a_i,b_j)$
- 7 **if** $a_i = b_i$ **then return** *Edit-Operations*(i 1, j 1)
- 8 else return *Edit-Operations* $(i 1, j 1) \circ$ "replace a_i by b_j "

Initial call: *Edit-Operations(m,n)*

Edit Operations



Edit Distance: Summary

- FREBURG
- Edit distance between two strings of length m and n can be computed in $O(\underline{mn})$ time.
- Obtain the edit operations:
 - for each cell, store which rule(s) apply to fill the cell
 - track path backwards from cell (m, n)
 - can also be used to get all optimal "alignments"
- Unit cost model:
 - interesting special case
 - each edit operation costs 1

Approximate String Matching Matching

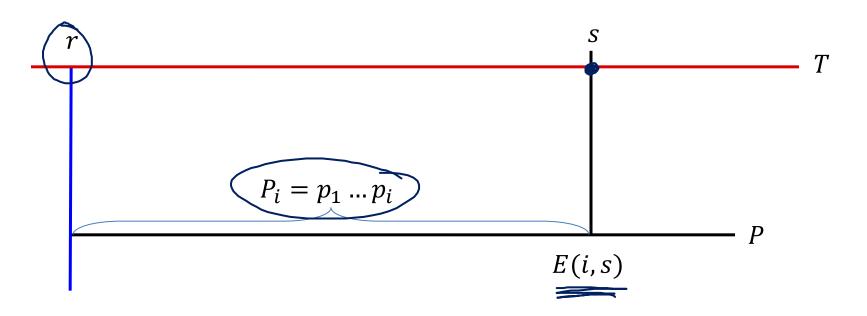
Given: strings $T = t_1 t_2 \dots t_n$ (text) and $P = p_1 p_2 \dots p_m$ (pattern).

Goal: Find an interval $[r, s], 1 \le r \le s \le n$ such that the sub-string $T_{r,s} \coloneqq t_r \dots t_s$ is the one with highest similarity to the pattern P: $\arg\min_{1\le r\le s\le n} D(T_{r,s}, P)$ $1\le r\le s\le n$ **Naive Solution:**

for all $1 \le r \le s \le n$ do compute $D(T_{r,s}, P)$ choose the minimum $O((S-r) \cdot m) = O(n \cdot m)$

A related problem:

• For each position s in the text and each position i in the pattern compute the minimum edit distance E(i, s) between $P_i = p_1 \dots p_i$ and any substring $T_{r,s}$ of T that ends at position s.



Approximate String Matching

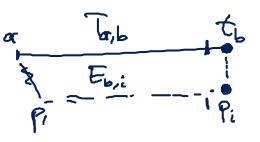
Three ways of ending optimal alignment between T_b and P_i :

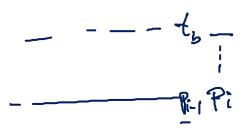
1.
$$t_b$$
 is replaced by p_i :
 $E_{b,i} = E_{b-1,i-1} + c(t_b, p_i)$

2. t_b is deleted:

$$E_{b,i} = E_{b-1,i} + c(t_b,\varepsilon)$$

$$E_{b,i} = E_{b,i-1} + c(\varepsilon, p_i)$$



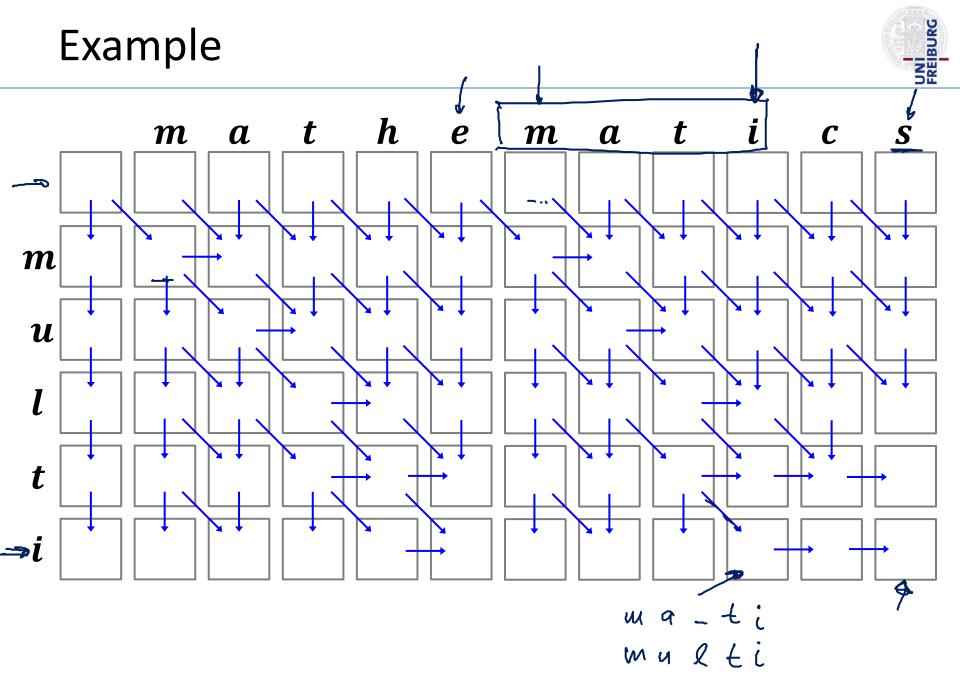


Approximate String Matching

Recurrence relation (unit cost model):

$$E_{b,i} = \min \begin{cases} E_{b-1,i-1} + 1 \\ E_{b-1,i} + 1 \\ E_{b,i-1} + 1 \end{cases} \bigcirc$$

Base cases:



Approximate String Matching

FREIBURG

- Optimal matching consists of optimal sub-matchings
- Optimal matching can be computed in O(mn) time
- Get matching(s):
 - Start from minimum entry/entries in bottom row
 - Follow path(s) to top row
- Algorithm to compute E(b, i) identical to edit distance algorithm, except for the initialization of $\underline{E(b, 0)}$

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid sequences.

Global vs. Local Alignment:

- *Global alignment*: find optimal alignment of 2 sequences
- Local alignment: find optimal alignment of sequence 1 (patter) with sub-sequence of sequence 2 (text)