Chapter 3
 Dynamic Programming

Algorithm Theory WS 2015/16

Fabian Kuhn

Edit Distance

Given: Two strings $A=a_{1} a_{2} \ldots a_{m}$ and $B=b_{1} b_{2} \ldots b_{n}$

Goal: Determine the minimum number $D(A, B)$ of edit operations required to transform A into B

Edit operations:

a) Replace a character from string A by a character from B
b) Delete a character from string A
c) Insert a character from string B into A

Edit Distance - Cost Model $\quad c(a, a)=0$

- Cost for replacing character a by $b: c(\underline{\boldsymbol{a}}, \underline{\boldsymbol{b}}) \geq \mathbf{0}$
- Capture insert, delete by allowing $a=\underset{\varepsilon}{\varepsilon}$ or $b=\varepsilon$:
- Cost for deleting character $a: c(a, \varepsilon)$
- Cost for inserting character $b: \boldsymbol{c}(\boldsymbol{\varepsilon}, \boldsymbol{b})$
- Triangle inequality:

$$
c(a, c) \leq c(a, b)+c(b, c)
$$

\rightarrow each character is changed at most once!

- Unit cost model: $c(a, b)= \begin{cases}1, & \text { if } a \neq b \\ 0, & \text { if } a=b\end{cases}$

Computation of the Edit Distance

Let $A_{k}:=a_{1} \ldots a_{k}, B_{\ell}:=b_{1} \ldots b_{\ell}$, and

$$
\underline{D_{k, \ell}}:=D\left(A_{k}, B_{\ell}\right)
$$

Computing the Edit Distance

- Recurrence relation (for $k, \ell \geq 1$)

$$
D_{k, \ell}=\min \left\{\begin{array}{l}
D_{k-1, \ell-1}+c\left(\underline{\left(\underline{a_{k}, b_{\ell}}\right)}\right. \\
\overline{\underline{D_{k-1, \ell}}}+\frac{c\left(\overline{a_{k}}, \varepsilon\right)}{\overline{\underline{k_{k, \ell-1}}}+c \underline{\left(\varepsilon, b_{\ell}\right)}}
\end{array}\right\}=\underbrace{\min \left\{\begin{array}{l}
D_{k-1, \ell-1}+1 / \underline{0} \\
D_{k-1, \ell}+1 \\
D_{k, \ell-1}+\underline{1}
\end{array}\right\}}_{\text {unit cost model }}
$$

- Need to compute $D_{i, j}$ for all $0 \leq i \leq k, 0 \leq j \leq \ell$:

Recurrence Relation for the Edit Distance

Base cases:

$$
\begin{aligned}
& \underline{D_{0,0}}=D(\varepsilon, \varepsilon)=0 \\
& D_{0, j}=D\left(\underline{\varepsilon}, B_{j}\right)=D_{0, j-1}+c\left(\varepsilon, b_{j}\right) \\
& D_{i, 0}=D\left(\underline{A_{i}}, \varepsilon\right)=D_{i-1,0}+c\left(a_{i}, \varepsilon\right)
\end{aligned}
$$

Recurrence relation:

$$
D_{i, j}=\min \left\{\begin{array}{l}
D_{k-1, \ell-1}+c\left(a_{k}, b_{\ell}\right) \\
D_{k-1, \ell}+c\left(a_{k}, \varepsilon\right) \\
D_{k, \ell-1}+c\left(\varepsilon, b_{\ell}\right)
\end{array}\right\}
$$

Example

Computing the Edit Operations

Algorithm Edit-Operations(i,j)
Input: matrix D (already computed)
Output: list of edit operations
1 if $i=0$ and $j=0$ then return empty list
2 if $i \neq 0$ and $D[i, j]=D[i-1, j]+1$ then
3 return Edit-Operations $(i-1, j) \circ$,delete $a_{i}{ }^{\prime}$
4 else if $j \neq 0$ and $D[i, j]=D[i, j-1]+1$ then return Edit-Operations $(i, j-1) \circ$, insert $b_{j}{ }^{\prime \prime}$

6 else $/ / D[i, j]=D[i-1, j-1]+c\left(a_{i}, b_{j}\right)$
7 if $a_{i}=b_{i}$ then return Edit-Operations $(i-1, j-1)$
8 else return Edit-Operations $(i-1, j-1) \circ$ „replace a_{i} by $b_{j}{ }^{\prime \prime}$
Initial call: Edit-Operations(m,n)

Edit Operations

Edit Distance: Summary

- Edit distance between two strings of length m and n can be computed in $O(\underline{\mathrm{mn}})$ time.
- Obtain the edit operations:
- for each cell, store which rule(s) apply to fill the cell
- track path backwards from cell ($\underline{m, n \text {) }}$
- can also be used to get all optimal "alignments"
- Unit cost model:
- interesting special case
- each edit operation costs 1

Approximate String Matching $m \ll n$

Given: strings $T=t_{1} t_{2} \ldots t_{n}$ (text) and $P=p_{1} p_{2} \ldots p_{m}$ (pattern).

Goal: Find an interval $[r, s], 1 \leq \underline{r} \leq \underline{s} \leq n$ such that the sub-string $T_{r, s}:=t_{r} \ldots t_{s}$ is the with highest similarity to the pattern P :

$$
\underset{1 \leq r \leq s \leq n}{\arg \min } D\left(T_{r, s}, P\right)
$$

Approximate String Matching

Naive Solution:

for all $1 \leq \underline{r} \leq \underline{s} \leq n$ do compute $D\left(T_{r, s}, P\right)$ fime: $O\left(n^{3} \cdot m\right)$
choose the minimum

$$
O((s-r) \cdot m)=O(n \cdot m)
$$

Approximate String Matching

A related problem:

- For each position s in the text and each position i in the pattern compute the minimum edit distance $E(i, s)$ between $P_{i}=p_{1} \ldots p_{i}$ and any substring $T_{r, s}$ of T that ends at position s.

Approximate String Matching

Three ways of ending optimal alignment between T_{b} and P_{i} :

1. t_{b} is replaced by p_{i} :

$$
E_{b, i}=\underline{E_{b-1, i-1}}+c\left(t_{b}, p_{i}\right)
$$

2. t_{b} is deleted:

$$
E_{b, i}=\underline{E_{b-1, i}+c\left(t_{b}, \varepsilon\right)}
$$

3. p_{i} is inserted:

$$
E_{b, i}=E_{b, i-1}+c\left(\varepsilon, p_{i}\right)
$$

Approximate String Matching

Recurrence relation (unit cost model):

$$
\boldsymbol{E}_{b, i}=\min \left\{\begin{array}{l}
\boldsymbol{E}_{b-1, i-1}+1 \\
\boldsymbol{E}_{b-1, i}+1 \\
\boldsymbol{E}_{b, i-1}+1
\end{array}\right\} 0^{\text {if } t_{b}=p_{i}}
$$

Base cases:

$$
\begin{aligned}
& E_{0,0}=\underline{0} \\
& \underline{E_{0, i}}=\boldsymbol{i} \\
& E_{i, 0}=\mathbf{0} \\
& \hline
\end{aligned}
$$

Example

Approximate String Matching

- Optimal matching consists of optimal sub-matchings
- Optimal matching can be computed in $O(m n)$ time
- Get matching(s):
- Start from minimum entry/entries in bottom row
- Follow path(s) to top row
- Algorithm to compute $E(b, i)$ identical to edit distance algorithm, except for the initialization of $E(b, 0)$

Related Problems in Bioinformatics

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid sequences.

$$
\begin{aligned}
& \text { GA-C G GATTAG } \\
& \text { GATCGGAAT-G}
\end{aligned}
$$

Global vs. Local Alignment:

- Global alignment: find optimal alignment of 2 sequences
- Local alignment: find optimal alignment of sequence 1 (patter) with sub-sequence of sequence 2 (text)

