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Edit Distance
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Given: Two strings A = a,a, ...a,;, and B = b1b, ... b,

Goal: Determine the minimum number D (4, B) of edit
operations required to transform A into B

Edit operations:

a) Replace a character from string A by a character from B
b) Delete a character from string A

c) Insert a character from string B into A
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Edit Distance — Cost Model 4(z,2) = o
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* Cost for replacing character a by b: C(f_l, Q) >0

e Capture insert, delete by allowinga = € or b = «:

— Cost for deleting character a: c(a, €)
— Cost for inserting character b: c(&, b)

* Triangle inequality:
c(a,c) <c(a,b) +c(b,c)
— each character is changed at most once!

1, ifa#b

* Unit cost model: c(a,b) = {O P
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Computation of the Edit Distance
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let A, =a, ...ay, By :=by...by, and

Dy,¢ = D (A, Bp)
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Computing the Edit Distance
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* Recurrence relation (for k,¥ = 1)

s

(Dk—l,f—l + C(ﬂ('*bf)\ ka—l,f—l + 1‘12\
Dy,=min{Dy_1, +c(ay€) ; =min{Dx_1, +1
a \Dre-1 +c(gby) ) Dke-1 +1

|
unit cost model

* Needtocompute D;jforall0 <i<k,0<j<¢:
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Recurrence Relation for the Edit Distance _

Base cases:
T
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DO()—D(E S)_O

0j = D(& Bj) = DO] 1+c_(£>bl)

Dl,O — D(é_u E) =Dy 1,0 + C(au g) /
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Recurrence relation:

(Dy_10-1 + c(ag, by
=min< Dy_1, +c(ag e)
\Dyrs—1 +c(gby) )
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Computing the Edit Operations
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Algorithm Edit-Operations(i, j)
Input: matrix D (already computed)
Output: list of edit operations

1 ifi = 0andj = 0 then return empty list

ifi #0and D[i,j] = D[i —1,j] + 1 then
return Edit-Operations(i — 1,j) o ,delete a;“

2

3

4 elseif j # 0and D[i,j] = D[i,j — 1] + 1 then
5 return Edit-Operations(i,j — 1) o ,insert b;“
6
7
8

else //D[i,j] =D[i —1,j — 1] + c(a;, b))
if a; = b; then return Edit-Operations(i — 1,j — 1)
else return Edit-Operations(i — 1,j — 1) o ,replace a; by b;“

Initial call: Edit-Operations(m,n)
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Edit Operations
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Edit Distance: Summary
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* Edit distance between two strings of length m and n can be
computed in O(mn) time.

e Obtain the edit operations:
— for each cell, store which rule(s) apply to fill the cell
— track path backwards from cell (m, n)
— can also be used to get all optimal_”zlignments”

e Unit cost model:
— interesting special case
— each edit operation costs 1
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Approximate String Matching w<n
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Given: strings T = t;t, ... t,, (text)and P = pyp, ... p,, (pattern).

Goal: Find aninterval [r,s], 1 < r < s < n such that the sub-string
T, ¢ ==t ...tg is the one with highest similarity to the pattern P:

arg min D (TT,S, P)

1<r<s<n

=
/ P
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Approximate String Matching
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Naive Solution:

foralll<r<s<ndo
compute D(T; g, P)
choose the minimum ’\

%v«uu O(Vlg'wk\

e
—

A &n-m) = X n-w)
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Approximate String Matching
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A related problem:

* For each position s in the text and each position i in the
pattern compute the minimum edit distance E(i, s) between
P; = p, ...p; and any substring T’. ¢ of T that ends at position s.

(") ; r

L/
P; =p;..p;
AN

E(i,s)

Algorithm Theory, WS 2015/16 Fabian Kuhn 13



Approximate String Matching
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Three ways of ending optimal alignment between T, and P;:

1. t, isreplaced by p;:

Ep; =Ep_1i—1 + c(tp,pi)

2. tp is deleted:
Epi = Ep_1,i + c(tp, &)

3. p;isinserted:

Ey; =Epi—q +c(ep;)
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Approximate String Matching

Recurrence relation (unit cost model):
L tyep;
(Ep_1,i-1+ 11 O
Eb,i = min < Eb—l,i +1
Epi-1 +1

Base cases:
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Approximate String Matching
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* Optimal matching consists of optimal sub-matchings
* Optimal matching can be computed in O(mn) time

* Get matching(s):
— Start from minimum entry/entries in bottom row
— Follow path(s) to top row

* Algorithm to compute E (b, i) identical to edit distance
algorithm, except for the initialization of E (b, 0)

_
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Related Problems in Bioinformatics
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Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid
sequences.

GA-CGGATTASZG
GATCGGAAT -G

Global vs. Local Alignment:
* Global alignment: find optimal alignment of 2 sequences

* Local alignment: find optimal alignment of sequence 1
(patter) with sub-sequence of sequence 2 (text)
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