UNI

"
Chapter 3

Dynamic Programming

FREIBURG

Algorithm Theory
WS 2015/16

Fabian Kuhn

Edit Distance

UNI
f

FREIBURG

Given: Two strings A = a,a, ...a,;, and B = b1b, ... b,

Goal: Determine the minimum number D (4, B) of edit
operations required to transform A into B

Edit operations:

a) Replace a character from string A by a character from B
b) Delete a character from string A

c) Insert a character from string B into A

£ma;them——atichn
mu@tiplicatio@—n

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Edit Distance — Cost Model 4(z,2) = o

UNI

FREIBURG

* Cost for replacing character a by b: C(f_l, Q) >0

e Capture insert, delete by allowinga = € or b = «:

— Cost for deleting character a: c(a, €)
— Cost for inserting character b: c(&, b)

* Triangle inequality:
c(a,c) <c(a,b) +c(b,c)
— each character is changed at most once!

1, ifa#b

* Unit cost model: c(a,b) = {O P

Algorithm Theory, WS 2015/16 Fabian Kuhn

Computation of the Edit Distance

UNI

FREIBURG

let A, =a, ...ay, By :=by...by, and

Dy,¢ = D (A, Bp)

At
A Ml

B ‘: //// j

a___\/
e

\
|
_J

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI

Computing the Edit Distance

FREIBURG

* Recurrence relation (for k,¥ = 1)

s

(Dk—l,f—l + C(ﬂ('*bf)\ ka—l,f—l + 1‘12\
Dy,=min{Dy_1, +c(ay€) ; =min{Dx_1, +1
a \Dre-1 +c(gby)) Dke-1 +1

|
unit cost model

* Needtocompute D;jforall0 <i<k,0<j<¢:

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Recurrence Relation for the Edit Distance _

Base cases:
T

<
- a

DO()—D(E S)_O

0j = D(& Bj) = DO] 1+c_(£>bl)

Dl,O — D(é_u E) =Dy 1,0 + C(au g) /

FRE:BURG

UNI

Recurrence relation:

(Dy_10-1 + c(ag, by
=min< Dy_1, +c(ag e)
\Dyrs—1 +c(gby))

D;

~"

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Example A
b C C a
— | O SN R Y
ot
b I a1 "2.———|>2“'°¢7('
e =5 -
a|? 2/l 2+ S| 4
D b2
v
d| 4
als 5

Algorithm Theory, WS 2015/16

Fabian Kuhn

Computing the Edit Operations

UNI

FREIBURG

Algorithm Edit-Operations(i, j)
Input: matrix D (already computed)
Output: list of edit operations

1 ifi = 0andj = 0 then return empty list

ifi #0and D[i,j] = D[i —1,j] + 1 then
return Edit-Operations(i — 1,j) o ,delete a;“

2

3

4 elseif j # 0and D[i,j] = D[i,j — 1] + 1 then
5 return Edit-Operations(i,j — 1) o ,insert b;“
6
7
8

else //D[i,j] =D[i —1,j — 1] + c(a;, b))
if a; = b; then return Edit-Operations(i — 1,j — 1)
else return Edit-Operations(i — 1,j — 1) o ,replace a; by b;“

Initial call: Edit-Operations(m,n)

Algorithm Theory, WS 2015/16 Fabian Kuhn

Edit Operations

UNI

FREIBURG

a b a
Of(l 111213 5
b| 11|11 1] 2 4
'\\
a| 2 1\22 3
b| 3|21 1] 2 4
|
d| 4| 31| 2| 2 4
a|5| 41313 @

Algorithm Theory, WS 2015/16

Fabian Kuhn

- abc Ccaq

babd —a
A

Edit Distance: Summary

UNI

FREIBURG

* Edit distance between two strings of length m and n can be
computed in O(mn) time.

e Obtain the edit operations:
— for each cell, store which rule(s) apply to fill the cell
— track path backwards from cell (m, n)
— can also be used to get all optimal_”zlignments”

e Unit cost model:
— interesting special case
— each edit operation costs 1

Algorithm Theory, WS 2015/16 Fabian Kuhn

10

UNI

Approximate String Matching w<n

FREIBURG

Given: strings T = t;t, ... t,, (text)and P = pyp, ... p,, (pattern).

Goal: Find aninterval [r,s], 1 < r < s < n such that the sub-string
T, ¢ ==t ...tg is the one with highest similarity to the pattern P:

arg min D (TT,S, P)

1<r<s<n

=
/ P

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Approximate String Matching

UNI

FREIBURG

Naive Solution:

foralll<r<s<ndo
compute D(T; g, P)
choose the minimum ’\

%v«uu O(Vlg'wk\

e
—

A &n-m) = X n-w)

Algorithm Theory, WS 2015/16 Fabian Kuhn

12

Approximate String Matching

UNI
f

FREIBURG

A related problem:

* For each position s in the text and each position i in the
pattern compute the minimum edit distance E(i, s) between
P; = p, ...p; and any substring T’. ¢ of T that ends at position s.

(") ; r

L/
P; =p;..p;
AN

E(i,s)

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Approximate String Matching

UNI
f

FREIBURG

Three ways of ending optimal alignment between T, and P;:

1. t, isreplaced by p;:

Ep; =Ep_1i—1 + c(tp,pi)

2. tp is deleted:
Epi = Ep_1,i + c(tp, &)

3. p;isinserted:

Ey; =Epi—q +c(ep;)

Algorithm Theory, WS 2015/16

Fabian Kuhn

e G
SR
2 ‘?z

{L_ _ __..--—o-oeb
P TR
— -_"--{'b-.—
F

- I

14

Approximate String Matching

Recurrence relation (unit cost model):
L tyep;
(Ep_1,i-1+ 11 O
Eb,i = min < Eb—l,i +1
Epi-1 +1

Base cases:

|

vy
< (=)
| (=)
I

-~ ”c

¢

O Ve~
|l

o .
A

[y I
~ O

3

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
f

FREIBURG

Example
{_ L . [.L
mathe[m_atl_cs
A R aE [N
m >
— N\ N
\\, \\
u
N\ N
N N
l
N\
t b
> a\
i |
?

wma -4

mu ¢ £

Algorithm Theory, WS 2015/16 Fabian Kuhn 16

Approximate String Matching

UNI

FREIBURG

* Optimal matching consists of optimal sub-matchings
* Optimal matching can be computed in O(mn) time

* Get matching(s):
— Start from minimum entry/entries in bottom row
— Follow path(s) to top row

* Algorithm to compute E (b, i) identical to edit distance
algorithm, except for the initialization of E (b, 0)

_

Algorithm Theory, WS 2015/16 Fabian Kuhn

17

Related Problems in Bioinformatics

UNI

FREIBURG

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid
sequences.

GA-CGGATTASZG
GATCGGAAT -G

Global vs. Local Alignment:
* Global alignment: find optimal alignment of 2 sequences

* Local alignment: find optimal alignment of sequence 1
(patter) with sub-sequence of sequence 2 (text)

Algorithm Theory, WS 2015/16 Fabian Kuhn

18

