Chapter 5
Data Structures

Algorithm Theory
WS 2015/16

Fabian Kuhn

UNI

FREIBURG

Priority Queue / Heap

UNI
f

FREIBURG

» Stores (key,data) pairs (like dictionary)
* But, different set of operations:

K‘Initialize-Heap: creates new empty heap
* Is-Empty: returns true if heap is empty

* Insert(key,data): inserts (key,data)-pair, returns pointer to entry

* Get-Min: returns (key,data)-pair with minimum key
* Delete-Min: deletes minimum (key,data)-pair

. DecreaseIey(entry,newkey): decreases key of entry to newkey
 Merge: merges two heaps into one

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Analysis

Number of priority queue operations for Dijkstra:

* [nitialize-Heap: 1

* Is-Empty: V|
* Insert: V]
* Get-Min: V

¢ Delete-Min: |4

e Decrease-Key: |E|

* Merge: 0

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
f

FREIBURG

Priority Queue Implementation

UNI

FREIBURG

Implementation as min-heap: o

2 e e, ONnS
* Initialize-Heap: 0(1) ° e e °
* Is-Empty: 0o(1) e @

__* Insert: O(logn)
+ Get-Min: o) Duytshe:
O((€I fog V1)

___+_Delete-Min: O(logn)

—

@crease-Key: 0(log@
—
* Merge (heaps of size mandn, m < n): O(mlogn)

Algorithm Theory, WS 2015/16 Fabian Kuhn

Fibonacci Heaps

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the

min-heap property.
Global Variables:

 H.min: root of the tree containing the (a) minimum key

 H.rootlist: circular, doubly linked, unordered list containing

e

the roots of all trees

 H.size: number of nodes currently in H

Structure of a Node:

Algorithm Theory, WS 2015/16

c(a'sur@l
[Ak
parent // ==
o} key degrée Q [
child/ mark
/

Fabian Kuhn

UNI
f

FREIBURG

Fibonacci Heaps

UNI
f

FREIBURG

Algorithm Theory, WS 2015/16

Figure: Cormen et al., Introduction to Algorithms

Fabian Kuhn

Simple (Lazy) Operations

UNI

FREIBURG

Initialize-Heap H.:
e H.rootlist := H.min := null

Merge heaps H and H':
e concatenate root lists
 update H.min

OO—o—0 - -~ - <©
Insert element e into H:

* create new one-node tree containing e 2> H’
— mark of root node is set to false

* merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Operation Delete-Min

UNI
f

FREIBURG

Delete the node with minimum kez/[from H and return its element:

o /

)
1. m:= H.min; O/ \o
® 2. if H.size > 0 then 4 \o
3. remove H. min from H.rootlist;

4. add H. min. child (list) to H.rootlist

5.(H.Consolidate(); >

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. returnm

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

UNI
f

FREIBURG

Rank and Maximum Degree

Ranks of nodes, trees, heap: (an'c = depree. = Hcll |dren

Node v:
 rank(v): degree of v (number of children of v)

Tree T
 rank(T): rank (degree) of root node of T

Heap H:
* rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):
rank(H) < D(n)

e
— for a known function D (n) T

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Merging Two Trees

UNI
f

FREIBURG

Given: Heap-ordered trees T, T' with rank(T) = rank(T")

« Assume: min-key of T < min-key of T’

T

Operation link(T,T'): link
. e T / \ T’

Removes tree T fromroot list . ~— .~
and adds T’ to child list of T X e 2;

. rw =rank(T) + 1

 (T'.mark = false)

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Consolidation of Root List £~~~ 2(7-‘ _

UNI

Array A pointing to find roots with the same rank:

FREIBURG

>
9 12 b(
Consolidate: -
Time:
1. fori:=0to D(n)do Ali] := null; O(|H.rootlist|+D(n))
2. while H.rootlist # null do m
3. L:= “delete and return first element of H.rootlist”
4. while A[rank(T)] # null do
>. T" = Alrank(T)]; | eodCistl~ |
6. Alrank(T)]| == null;
7. T = link(T,T")
3. Alrank(T)] =T
9. Create new H.rootlist and H.min

———— 0 —

—

Algorithm Theory, WS 2015/.13 Fabian Kuhn 11

Consolidate Example

link

----- —® g@@

-

(3]
19 (@

Algorithm Theory, WS 2015/16 Fabian Kuhn

Consolidate Example

link

Algorithm Theory, WS 2015/16 Fabian Kuhn

13

Consolidate Example

Algorithm Theory, WS 2015/16 Fabian Kuhn

14

Consolidate Example

link

Algorithm Theory, WS 2015/16 Fabian Kuhn

15

Consolidate Example

Algorithm Theory, WS 2015/16 Fabian Kuhn

16

Consolidate Example

Algorithm Theory, WS 2015/16 Fabian Kuhn

17

Operation Decrease-Key

UNI
f

FREIBURG

Decrease-Key(v, x): (decrease key of node v to new value x)

if x = v. key then return;
v.key := x; update H.min;

if v € H.rootlist V x = v.parent. key thenre

parent := v.parent; %4@9?
&%

H.cut(v); VN (03

17 = parent; / \

until =(v.mark) vV v € H.rootlist;

repeat

L X N O Uk WWDNRE

if v € H.rootlist then v.mark = true;
.F_

Algorithm Theory, WS 2015/16 Fabian Kuhn

18

Operation Cut(v)

UNI
f

FREIBURG

Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

if v € H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;
remove v from v.parent. child (list)
v.parent = null;

A A T o

add v to H.rootlist; v.mark := false;

Algorithm Theory, WS 2015/16 Fabian Kuhn 19

Decrease-Key Example

UNI

FREIBURG

e Green naodes are marked

Algorithm Theory, WS 2015/16 Fabian Kuhn

20

UNI

Fibonacci Heaps Marks

FREIBURG

 Nodes in the root list (the tree roots) are always unmarked
— If a node is added to the root list (insert, decrease-key), the
mark of the node is set to false. Lo (2le ~unic

* Nodes not in the root list can only get marked when a subtree
is cut in a decrease-key operation — /%;‘/

* Anode vis marked if and only if v is not in the ro@‘list and v
has lost a child since v was attached to its current parent

— a node can only change its parent by being moved to the root list

Algorithm Theory, WS 2015/16 Fabian Kuhn 21

Fibonacci Heap Marks

UNI
FREIBURG

History of a node v:

v is being linked to a node

a child of v is cut

a second child of v is cut

v.mark:= false

v.mark = true

H.cut(v);
v.mark := false

 Hence, the boolean value v. mark indicates whether node v has
lost a child since the last time v was made the child of another

node.

 Nodes v in the root list always have v.mark = false

Algorithm Theory, WS 2015/16 Fabian Kuhn

22

Cost of Delete-Min & Decrease-Key

UNI
f

FREIBURG

Delete-Min:

—_— /
1. Delete min. root r and ao H.rootlist
time: 0(1) & O(De) ¥ o ™

2. Consolidate H.rootlist e Lalede—un
time: Q(length of H.rootlist + D(n))

e Step 2 can potentially be linear in n (size of H)

$
by

Decrease-Key (at node v):
1. If new key < parent key, cut sub-tree of node’g
time: 0(1)
2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearin n

Exercises: Both operations can take ®(n) time in the worst case!

Algorithm Theory, WS 2015/16 Fabian Kuhn 23

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

* Cost of delete-min and decrease-key can be O(n)...

— Seems a large price to pay to get insert and merge in O(1) time

 Maybe, the operations are efficient most of the time?

— |t seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

 Can we show that the average cost per operation is small?

gm——

* We can =2 required amortized analysis 3

Algorithm Theory, WS 2015/16 Fabian Kuhn

24

Fibonacci Heaps Complexity

UNI
FREIBURG

* Worst-case cost of a single delete-min or decrease-key
operation is Q(n)

* Can we prove a small worst-case amortized cost for
delete-min and decrease-key operations?

Recall:
* Data structure that allows operations Oy, ..., O

—

* We say that operation 0, has amortized cost ap if for every
execution the total time is
Pm—

k
EPREC
p=1" =
where n,, is the number of operations of type 0,

D —

Algorithm Theory, WS 2015/16 Fabian Kuhn 25

Amortized Cost of Fibonacci Heaps

* [|nitialize-heap, is-empty, get-min, insert, and merge
have worst-case cost 0(1) amd aworbied - 1)

* Delete-min has amortized cost O(logn)
* Decrease-key has amortized cost O(1)

—

e Starting with an empty heap, any sequence ofj‘operations
with at most n; delete-min operations has total cost (time)

(T = 0(1’1 + nglogn).

 We will now need the marks...
o, OC(E1Lag\VI1)
 Cost for Dijkstra: O(|E| + |V|log |V])

OQZCre-ase —k’—7

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
f

FREIBURG

UNI

Fibonacci Heaps: Marks

FREIBURG

Cycle of a node:

1. Node v is removed from root list and linked to a node
v.mark = false

———

2. Child node u of v is cut and added to root list
v.mark := true

—

3. Second child of v is cut
node v is cut as well and moved to root list

e

v.mark := false

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

Algorithm Theory, WS 2015/16 Fabian Kuhn 27

Potential Function

UNI
FREIBURG

System state characterized by two parameters:
* R:number of trees (length of H.rootlist)
e M: number of marked nodes (not in the root list)

Potential function:
(;+ 2M

Example:

+ R=7,M=2 > &=11

e —

Algorithm Theory, WS 2015/16 Fabian Kuhn 28

Actual Time of Operations

UNI

FREIBURG

* Operations: initialize-heap, is-empty, insert, get-min, merge

actual time?O(l)

— Normalize unit time such that

Cinitr Lis— , L yCaet—miny € <1
init» Lis—empty “insertr “get—min» “merge

* Operation delete-min: /(az[w Lelobe-wmtn

— Actual time: O(Iength of H.rootlist + D(n)) %O
— Normalize unit time such that 7,@
tael—min < D(n) + length of H.rootlist

* Operation descrease-key: v Cﬂz

— Actual time: O(length of path to next unmarked ancestor)
— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory, WS 2015/16 Fabian Kuhn

29

Amortized Times a, =%+ ©- ¢

UNI

FREIBURG

Assume operation i is of type:

* initialize-heap:
— actual time: t; < 1, potential: ®;_; = ®; =0
— amortized time: a; = t; + ¢; —P;_; <1

* is-empty, get-min:
— actual time: t; < 1, potential: ®; = ®;_; (heap doesn’t change)

e

— amortized time: a; = t; + ¢; —P;_1 <1

°* merge:
— Actualtime: t; <1
— combined potential of both heaps: ®; = &;_4
— amortized time: a; = t; + ¢; —P;_1 <1

Algorithm Theory, WS 2015/16 Fabian Kuhn

30

Amortized Time of Insert

UNI

Assume that operation i is an insert operation:

* Actualtime:t; <1 Zﬁ*Z\ - —— 5-—-0

 Potential function:

— M remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)

c(;=t_%+2ﬂ

Mi=M_1, R =Ri1+t1 - -
(Di — cDi—l + 1 T

e Amortized time:

Algorithm Theory, WS 2015/16 Fabian Kuhn 31

FREIBURG

Amortized Time of Delete-Min Tj T _

FREIBURG

i~ H[z
Assume that operation i is a delete-min operation:
J otoe o2 -
Actual time: t; < D(n) + |H.rootlist|
oo R=Dox

Potential function ® = R + 2M: R: - R = Dearl -~ ekl
* R:changes from |H.rootlist| to at most D(n)+\
 M: (# of marked nodes that are not in the root list) é"""“

— no new marks C/c{L\o

— if node v is moved away from root list, v. mark is set to false
- value of M does not increase!

M; < M4, R; < R;_; + D(n) — |H.rootlist| +f
CIDL < CIDL 1+ D(n) — |H. rootlist]| 1
—~—~

Amortized Time:
a; = ti + (I)i — q)i—l < ZD(n) +\
e ——

=
Algorithm Theory, WS 2015/16 Fabian Kuhn 32

Amortized Time of Decrease-Key

UNI
f

FREIBURG

Assume that operation i is a decrease-key operation at node u:

Actual time: t; < length of path to next unmarked ancestor v

4
Potential function ® = R + 2M.:

* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U are marked and moved to root list, v. mark is set to true

O
L W g-’r(cuts
’E‘L = v+ u‘ﬁp ‘-ba{-(;s% %rpws [07 Lty
om——
',' rowi o ?aL \AAATLQ-
e, edd | wark
A

Algorithm Theory, WS 2015/16 Fabian Kuhn 33

Amortized Time of Decrease-Key

UNI
FREIBURG

Assume that operation i is a decrease-key operation at node u:

Actual time: t; < length of path to next unmarked ancestor v

/
Potential function ® = R + gM:

* Assume, node u and nodes uq, ..., U, are moved to root list
— U4, ..., U are marked and moved to root list, v. mark is set to true

> k marked nodes go to root list, < 1 node gets newly marked
* Rgrowsby<k+ 1, M grows by 1 and is decreased by = k

Ri<R,_,+k+1 M;<M;,_,+1—k
Gy S P+ (k+1)—2(k—1) =D +3—k

Amortized time:
a=t;+®—®_1<k+1+3-k=4

-ﬁ.———-z

Algorithm Theory, WS 2015/16 Fabian Kuhn 34

Complexities Fibonacci Heap

——

UNI
f

FREIBURG

* Initialize-Heap: 0(1)

* Is-Empty: 0(1)
* Insert: 0(1)
* Get-Min: 0(1)

* Delete-Min: 0(D(n)) i
— (> amortized
* Decrease-Key: 0(1)

Merge (heaps of size mand n, m < n): 0(1)

* How large can D(n) get?
weed Yo sliows J(exan" IO ':-"-O(,Q@g M)

Algorithm Theory, WS 2015/16 Fabian Kuhn

35

Rank of Children

UNI
FREIBURG

Lemma:

Consider a node v of rank k and let u4, ..., u; be the children of
v in the order in which they were linked to v. Then,

rank(u;) > i — 2.

Proof: =
g Y,
“ N
Lo X3 w'&-gj
U i, "™ 2ol Al — — -
re /X

Algorithm Theory, WS 2015/16 Fabian Kuhn 36

Size of Trees o,1, 1,23 5,8, 13, 2/,. -

/7]

UNI
f

FREIBURG

Fibonacci Numbers:

F,=0, F, =1 Vk>2:F,=F,_,+F,_,

e——

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node_v with

rank k is at least Fy, . Vv) S,
= a— S e A —
Proof: / \M(7 tra

* Si: minimum size of the sub-tree of a node of rank k

Se,:l/ St=2
y b2
) ”O L gk = Z“\' 2SL
/ z—.77 2)WY, - _ ltTO
‘§ MLM RW&—Z’ E.Z ‘ﬂevkws LQWWV‘O\
Sy _

Algorithm Theory, WS 2015/16 Fabian Kuhn

37

Size of Trees o 1 |

/7 s/

UNI
f

FREIBURG

k-2
So=1 S, =2 Vk22:5k22+25i
=0

e Claim about Fibonacci numbers:

k
Vk = O:Fk+2 — 1+2Fl
=0

B—

—

slee:
= = _ T . T

[, T+ L4
kg = s k-
by [+ =K e
=0

Algorithm Theory, WS 2015/16 Fabian Kuhn 38

UNI

Size of Trees 20T

FREIBURG

k—2 K
So=1,85=2,Vk=>2:5, =2+ S;) Fk+2=1+ZFi
- i=0 i=0
* Claimoflemma: S, = Fj.»
\5‘9 s b
bae: S,z2FH=1 v Szw=2
- L2 T+ k.'..Z‘—\
she: S 2 2 4 =S 2 2+ 2%,
=0 \=D
12
- 2+ =7
y =%
x
- |+ =2F =" v
J=o 2

Algorithm Theory, WS 2015/16 Fabian Kuhn 39

Size of Trees

UNI
f

FREIBURG

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k
is at least Fy, ;.

—— (D(.;) < Wax)?k u—zs‘\'\?

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

D(n) = O(logn).

Proof:
* The Fibonacci numbers grow exponentially:

1 [(1+V5\" [1-+5
now () (50

—_—

k

 ForD(n) = k, we needn > F;,,, nodes.

a—

Algorithm Theory, WS 2015/16 Fabian Kuhn 40

Summary: Binomial and Fibonacci Heaps

UNI
FREIBURG

initialize
insert
get-min
delete-min
decrease-key
merge

is-empty

Algorithm Theory, WS 2015/16

Binary Heap Fibonacci Heap
0(1) 0(1)
O(logn) o(1)
0(1) 0(1)
0flogm) _0llog)™ > i
O(log n) o(1)*
O(m-logn) o(1)
0(1) 0(1)
* amortized time

