

Chapter 4 Data Structures

Algorithm Theory WS 2014/15

Fabian Kuhn

Minimum Spanning Trees

Given: weighted graph

Goal: spanning tree with minimum total weight

Prim Algorithm:

- 1. Start with any node v (v is the initial component)
- 2. In each step: Grow the current component by adding the minimum weight edge e connecting the current component with any other node

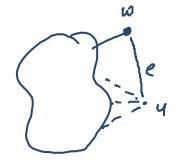
Kruskal Algorithm:

- 1. Start with an empty edge set
- 2. In each step: Add minimum weight edge e such that e does not close a cycle

Implementation of Prim Algorithm

Start at node s, very similar to Dijkstra's algorithm:

- 1. Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- 2. All nodes $s \geq v$ are unmarked



3. Get unmarked node u which minimizes d(u):

For all
$$e = \{u, v\} \in E$$
, $d(v) = \min\{d(v), w(e)\}$ if update needed: decrease-bay

5. mark node u

Until all nodes are marked

Implementation of Prim Algorithm

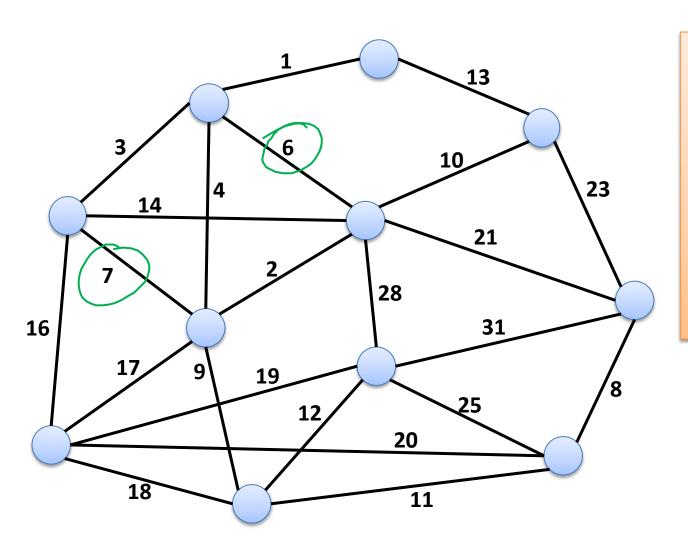
Implementation with Fibonacci heap:

Analysis identical to the analysis of Dijkstra's algorithm:

$$O(n)$$
 insert and delete-min operations $O(m)$ decrease-key operations

• Running time: $O(m + n \log n)$

Kruskal Algorithm



- 1. Start with an empty edge set
- 2. In each step:
 Add minimum
 weight edge e
 such that e does
 not close a cycle

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

2. For each edge *e*:

if e does not close a cycle then

need to check whether e= ? 4v? closes a cycle need to check whether u and v are in the same comparent

add e to the current solution

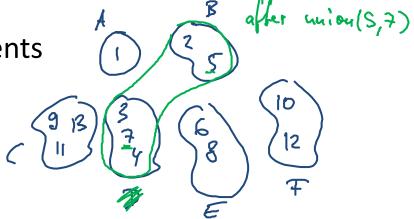
held to merge components of h and V

Union-Find Data Structure

Also known as **Disjoint-Set Data Structure**...

Manages partition of a set of elements

set of disjoint sets



Operations:

- $make_set(x)$: create a new set that only contains element x
- find(x): return the set containing x
- union(x, y): merge the two sets containing x and y

Implementation of Kruskal Algorithm

1. Initialization:

For each node v: make_set(v)

- 2. Go through edges in order of increasing weights: Sort edges by edge weight
- 3. For each edge $e = \{u, v\}$:

```
if find(u) \neq find(v) then
```

add e to the current solution \triangleleft

union
$$(u, v)$$

Managing Connected Components

- Union-find data structure can be used more generally to manage the connected components of a graph
 - ... if edges are added incrementally
- $make_set(v)$ for every node v
- find(v) returns component containing v
- union(u, v) merges the components of u and v (when an edge is added between the components)
- Can also be used to manage biconnected components

Basic Implementation Properties

Representation of sets:

• Every set S of the partition is identified with a representative, by one of its members $x \in S$

Operations:

- $make_set(x)$: \underline{x} is the representative of the new set $\{x\}$
- find(x): return representative of set S_x containing x
- union(x, y): unites the sets S_x and S_y containing x and y and returns the new representative of $S_x \cup S_y$

Observations

Throughout the discussion of union-find:

- n: total number of make_set operations
- m: total number of operations (make_set, find, and union)

Clearly:

- $m \ge n$
- There are at most n-1 union operations

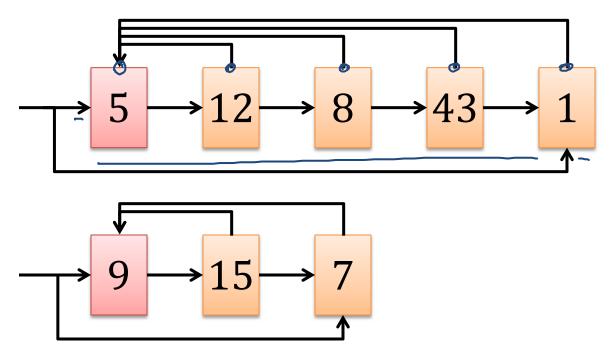
Remark:

- We assume that the n make_set operations are the first n operations
 - Does not really matter...

Linked List Implementation

Each set is implemented as a linked list:

representative: first list element (all nodes point to first elem.)
 in addition: pointer to first and last element



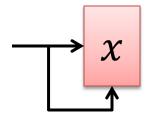
• sets: {1,5,8,12,43}, {7,9,15}; representatives: 5, 9

Linked List Implementation

$make_set(x)$:

Create list with one element:

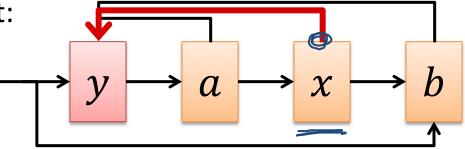
time: O(1)



find(x):

Return first list element:

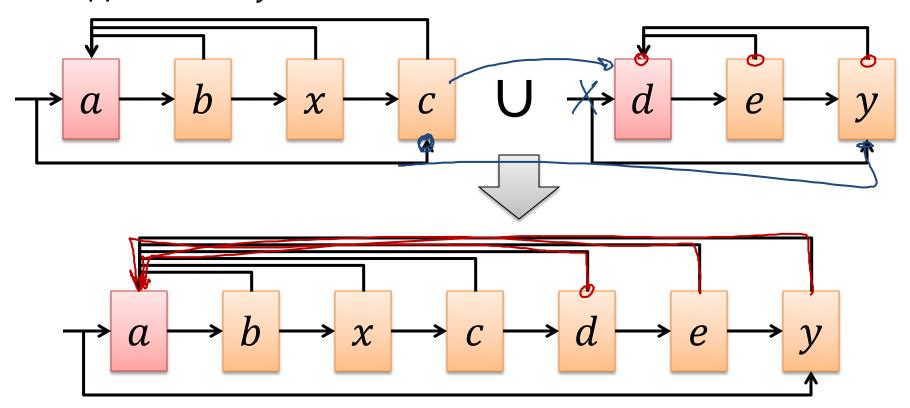
time: O(1)



Linked List Implementation

union(x, y):

Append list of y to list of x:



Time: O(length of list of y)

Cost of Union (Linked List Implementation)

Total cost for n-1 union operations can be $\Theta(n^2)$:

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_{n-1}, x_n), union(x_{n-2}, x_{n-1}), ..., union(x_1, x_2)

Weighted-Union Heuristic

- In a bad execution, average cost per union can be $\Theta(n)$
- Problem: The longer list is always appended to the shorter one

Idea:

In each union operation, append shorter list to longer one!

Cost for union of sets S_x and S_y : $O(\min\{|S_x|, |S_y|\})$

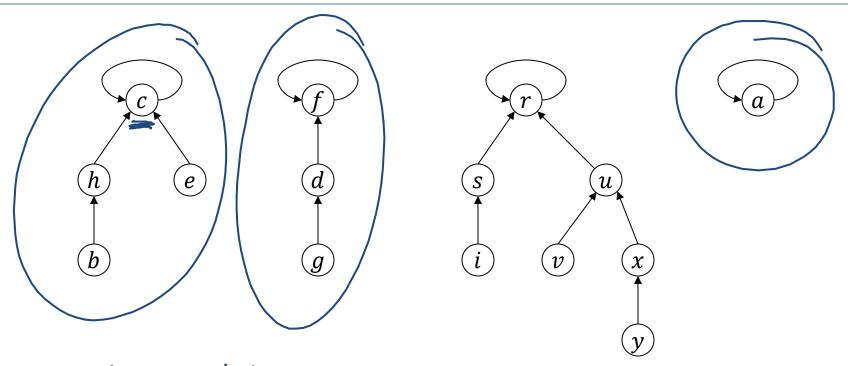
Theorem: The overall cost of m operations of which at most \underline{n} are make_set operations is $O(\underline{m} + n \log n)$.

Weighted-Union Heuristic

Theorem: The overall cost of m operations of which at most n are make_set operations is $O(m + n \log n)$.

Proof: total cost of make-set & fud op: med to bound cost of union operations: = #of pointer radirections Consides a fixed element x How often do we need to redirect the pointer of x? Site of set containing a at least doubles → at logu redirections containing x

Disjoint-Set Forests

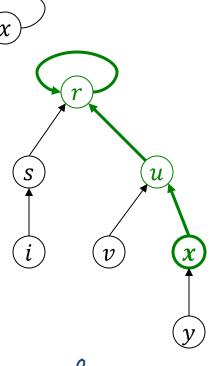


- Representative
 Represent each set by a tree
- Representative of a set is the root of the tree

Disjoint-Set Forests

make_set(x): create new one-node tree

find(x): follow parent point to root
 (parent pointer to itself)



union(x, y): attach tree of x to tree of y



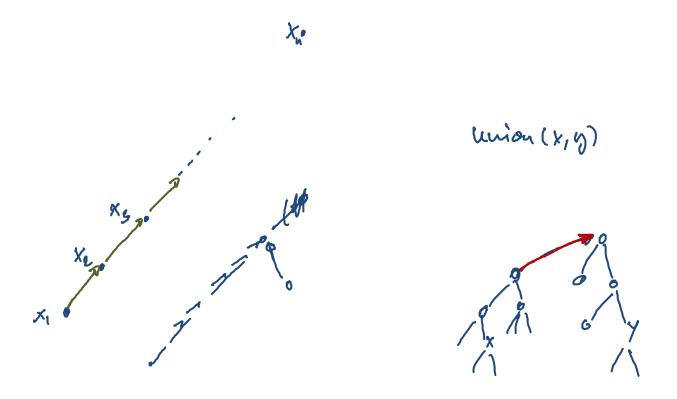
Algorithm Theory, WS 2014/15

Fabian Kuhn

Bad Sequence

Bad sequence leads to tree(s) of depth $\Theta(n)$

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_1, x_2), union(x_1, x_3), ..., union(x_1, x_n)



Union-By-Size Heuristic

Union of sets S_1 and S_2 :

- Root of trees representing S_1 and S_2 : r_1 and r_2 | Smaller to the w.l.o.g., assume that $|S_1| > |S_2|$
- Root of $S_1 \cup S_2$: r_1 (r_2 is attached to r_1 as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case cost of a find-operation is $O(\log n)$

Proof: depth of each tree Tis and most log & (&: site of tree T)

depth of element x: dx => size of tree cont. x is
$$\geq 2^{d_x}$$
 $d_x=0$ how can d_x grow

 T_x
 T_x

To low less of tree of x

Similar Strategy: union-by-rank

rank: essentially the depth of a tree

Union-Find Algorithms

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

make_set: worst-case cost O(1)

• find : worst-case cost O(1)

• union : amortized worst-case cost $O(\log n)$

Disjoint-Set Forest with Union-By-Size Heuristic:

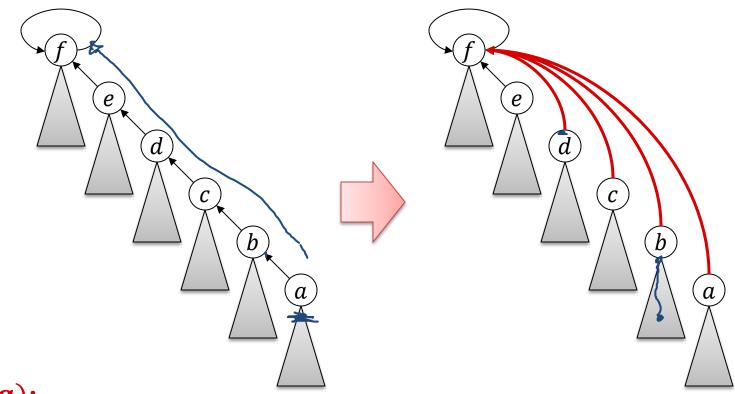
• make_set: worst-case cost O(1)

• find : worst-case cost $O(\log n)$

• union : worst-case cost $O(\log n)$

Can we make this faster?

Path Compression During Find Operation



find(a):

- 1. if $a \neq a$. parent then
- 2. a.parent := find(a.parent)
- 3. **return** *a.parent*

Complexity With Path Compression

When using only path compression (without union-by-rank):

 \underline{m} : total number of operations

- \underline{f} of which are find-operations
- <u>n</u> of which are make_set-operations
 - \rightarrow at most n-1 are union-operations

Total cost:
$$O\left(m + f \cdot \log_{2+f/n} n\right) = O(m + f \cdot \log_{2+m/n} n)$$

$$f = O(u)$$

$$log u$$

$$log u$$

$$log (2+u/u)$$

Union-By-Size and Path Compression

Theorem:

Using the combined union-by-rank and path compression heuristic, the running time of m disjoint-set (union-find) operations on n elements (at most n make_set-operations) is

$$\Theta(m \cdot \alpha(m,n)),$$

Where $\alpha(m,n)$ is the inverse of the Ackermann function.

grows extremely slowly
in practice
$$\alpha(y,y) \leq 5$$

Ackermann Function and its Inverse

Ackermann Function:

For
$$k,\ell \geq 1$$
,
$$A(k,\ell) \coloneqq \begin{cases} 2^{\ell}, & \text{if } k = 1,\ell \geq 1 \\ A(k-1,2), & \text{if } k > 1,\ell = 1 \\ A(k-1,A(k,\ell-1)), & \text{if } k > 1,\ell > 1 \end{cases}$$

Inverse of Ackermann Function:

$$\underline{\alpha(m,n)} := \min\{k \geq 1 \mid A(k,\lfloor m/n \rfloor) > \log_2 n\}$$

Inverse of Ackermann Function A(4,1)

• $\alpha(m,n) := \min\{k \geq 1 \mid A(k,\lfloor m/n \rfloor) > \log_2 n\}$

$$m \ge n \Longrightarrow A(k,\lfloor^m/n\rfloor) \ge A(k,1) \Longrightarrow \alpha(m,n) \le \min\{k \ge 1 | A(k,1) > \log n\}$$

•
$$A(1,\ell) = 2^{\ell}$$
, $A(k,1) = A(k-1,2)$,
 $A(k,\ell) = A(k-1,A(k,\ell-1))$

•
$$A(2,1) = A(1,2) = 4$$

•
$$A(3,1) = A(2,2) = A(1,A(2,1)) = 2^4$$

•
$$A(4,1) = A(3,2) = A(2,A(3,1)) = A(2,2^4)$$

$$= A(1, A(2, 2^4 - 1)) = 2^{2^{2^{\cdot \cdot \cdot 2}}}$$
 * + 1 times

•
$$A(5,1) = ...$$