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Ford Fulkerson: Running Time 

• Time of regular Ford-Fulkerson algorithm with integer capacities: 
 

𝑂(𝑚𝐶) 
 

• Time of algorithm with scaling parameter: 
 

𝑂 𝑚2log 𝐶  
 

• 𝑂(log 𝐶) is polynomial in the size of the input, but not in 𝑛 
 

• Can we get an algorithm that runs in time polynomial in 𝑛? 
 

• Always picking a shortest augmenting path leads to running time 
 

𝑂(𝑚2𝑛) 
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Other Maximum Flow Algorithms 

• There are many other algorithms to solve the maximum flow 
problem, for example: 
 

• Preflow-push algorithm: 
– Maintains a preflow (∀ nodes: inflow ≥ outflow) 

– Alg. guarantees: As soon as we have a flow, it is optimal 

– Detailed discussion in 2012/13 lecture 

– Running time of basic algorithm: 𝑂 𝑚 ⋅ 𝑛2  

– Doing steps in the “right” order: 𝑂 𝑛3  
 

• Current best known complexity: 𝑶 𝒎 ⋅ 𝒏  
– For graphs with 𝑚 ≥ 𝑛1+𝜖                       [King,Rao,Tarjan 1992/1994] 

(for every constant 𝜖 > 0) 
 

– For sparse graphs with 𝑚 ≤ 𝑛16 15 −𝛿                               [Orlin, 2013] 
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Maximum Flow Applications 

• Maximum flow has many applications 

 

• Reducing a problem to a max flow problem can even be seen as 
an important algorithmic technique 

 

• Examples: 
– related network flow problems 

– computation of small cuts 

– computation of matchings 

– computing disjoint paths 

– scheduling problems 

– assignment problems with some side constraints 

– … 
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Undirected Edges and Vertex Capacities 

Undirected Edges: 

• Undirected edge {𝑢, 𝑣}: add edges 𝑢, 𝑣  and (𝑣, 𝑢) to network 
 

Vertex Capacities: 

• Not only edges, but also (or only) nodes have capacities 

• Capacity 𝑐𝑣 of node 𝑣 ∉ {𝑠, 𝑡}: 
 

𝑓in 𝑣 = 𝑓out 𝑣 ≤ 𝑐𝑣 
 

• Replace node 𝑣 by edge 𝑒𝑣 = {𝑣in, 𝑣out}: 

 

 𝑣  𝑣in  𝑣out 
𝒄𝒗 
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Minimum 𝑠-𝑡 Cut 

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉 
 

𝒔-𝒕 cut: Partition (𝐴, 𝐵) of 𝑉 such that 𝑠 ∈ 𝐴, 𝑡 ∈ 𝐵 
 

Size of cut (𝑨,𝑩): number of edges crossing the cut 

 

 

 

Objective: find 𝑠-𝑡 cut of minimum size 
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Edge Connectivity 

Definition: A graph 𝐺 = 𝑉, 𝐸  is 𝑘-edge connected for an integer 
𝑘 ≥ 1 if the graph 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋) is connected for every edge set 
 

𝑋 ⊆ 𝐸, 𝑋 ≤ 𝑘 − 1. 

 

 

 

 

Goal: Compute edge connectivity 𝜆(𝐺) of 𝐺  
           (and edge set 𝑋 of size 𝜆(𝐺) that divides 𝐺 into ≥ 2 parts) 

 

• minimum set 𝑋 is a minimum 𝑠-𝑡 cut for some 𝑠, 𝑡 ∈ 𝑉 
– Actually for all 𝑠, 𝑡 in different components of 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋)  

 

• Possible algorithm: fix 𝑠 and find min 𝑠-𝑡 cut for all 𝑡 ≠ 𝑠 
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Minimum 𝑠-𝑡 Vertex-Cut 

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉 
 

𝒔-𝒕 vertex cut: Set 𝑋 ⊂ 𝑉 such that 𝑠, 𝑡 ∉ 𝑋 and 𝑠 and 𝑡 are in 
different components of the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋 
 

Size of vertex cut: |𝑋| 

 

Objective: find 𝑠-𝑡 vertex-cut of minimum size 

• Replace undirected edge {𝑢, 𝑣} by (𝑢, 𝑣) and (𝑣, 𝑢) 

• Compute max 𝑠-𝑡 flow for edge capacities ∞ and node capacities 
 

𝑐𝑣 = 1 for 𝑣 ≠ 𝑠, 𝑡 
 

• Replace each node 𝑣 by 𝑣in and 𝑣out: 
 

• Min edge cut corresponds to min vertex cut in 𝐺 
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Vertex Connectivity 

Definition: A graph 𝐺 = 𝑉, 𝐸  is 𝑘-vertex connected for an integer 
𝑘 ≥ 1 if the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋 is connected for 
every edge set 

𝑋 ⊆ 𝑉, 𝑋 ≤ 𝑘 − 1. 

 

 

 

 

 

Goal: Compute vertex connectivity 𝜅(𝐺) of 𝐺  
           (and node set 𝑋 of size 𝜅(𝐺) that divides 𝐺 into ≥ 2 parts) 

 

• Compute minimum 𝑠-𝑡 vertex cut for fixed 𝑠 and all 𝑡 ≠ 𝑠 
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Edge-Disjoint Paths 

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉 

 

Goal: Find as many edge-disjoint 𝑠-𝑡 paths as possible 

 

Solution:  

• Find max 𝑠-𝑡 flow in 𝐺 with edge capacities 𝑐𝑒 = 1 for all 𝑒 ∈ 𝐸 

 

Flow 𝑓 induces 𝑓  edge-disjoint paths: 

• Integral capacities  can compute integral max flow 𝑓 

• Get 𝑓  edge-disjoint paths by greedily picking them 

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣) 
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Vertex-Disjoint Paths 

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉 

 

Goal: Find as many internally vertex-disjoint 𝑠-𝑡 paths as possible 

 

Solution:  

• Find max 𝑠-𝑡 flow in 𝐺 with node capacities 𝑐𝑣 = 1 for all 𝑣 ∈ 𝑉 

 

Flow 𝑓 induces 𝑓  vertex-disjoint paths: 

• Integral capacities  can compute integral max flow 𝑓 

• Get 𝑓  vertex-disjoint paths by greedily picking them 

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣) 
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Menger’s Theorem 

Theorem: (edge version) 
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the 
minimum 𝑠-𝑡 (edge) cut equals the maximum number of pairwise 
edge-disjoint paths from 𝑠 to 𝑡. 
 

 

Theorem: (node version) 
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the 
minimum 𝑠-𝑡 vertex cut equals the maximum number of pairwise 
internally vertex-disjoint paths from 𝑠 to 𝑡 

 
 

• Both versions can be seen as a special case of the max flow min 
cut theorem 


