IIF

Chapter 6
 Graph Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

Flow Network

Ford Fulkerson: Running Time

- Time of regular Ford-Fulkerson algorithm with integer capacities:

$$
O(m C)
$$

- Time of algorithm with scaling parameter:

$$
O\left(m^{2} \log C\right)
$$

- $O(\log C)$ is polynomial in the size of the input, but not in n
- Can we get an algorithm that runs in time polynomial in n ?
- Always picking a shortest augmenting path leads to running time

$$
O\left(m^{2} n\right)
$$

Other Maximum Flow Algorithms

- There are many other algorithms to solve the maximum flow problem, for example:
- Preflow-push algorithm:
- Maintains a preflow (\forall nodes: inflow \geq outflow)
- Alg. guarantees: As soon as we have a flow, it is optimal
- Detailed discussion in 2012/13 lecture
- Running time of basic algorithm: $O\left(m \cdot n^{2}\right)$
- Doing steps in the "right" order: $O\left(n^{3}\right)$
- Current best known complexity: $\boldsymbol{O}(\boldsymbol{m} \cdot \boldsymbol{n})$
- For graphs with $m \geq n^{1+\epsilon} \quad$ [King,Rao,Tarjan 1992/1994] (for every constant $\epsilon>0$)
- For sparse graphs with $m \leq n^{16 / 15-\delta}$
[Orlin, 2013]

Maximum Flow Applications

- Maximum flow has many applications
- Reducing a problem to a max flow problem can even be seen as an important algorithmic technique
- Examples:
- related network flow problems
- computation of small cuts
- computation of matchings
- computing disjoint paths
- scheduling problems
- assignment problems with some side constraints
- ...

Undirected Edges and Vertex Capacities

Undirected Edges:

- Undirected edge $\{u, v\}$: add edges (u, v) and (v, u) to network

Vertex Capacities:

- Not only edges, but also (or only) nodes have capacities
- Capacity c_{v} of node $v \notin\{s, t\}$:

$$
f^{\mathrm{in}(v)}=f^{\text {out }}(v) \leq c_{v}
$$

- Replace node v by edge $e_{v}=\left\{v_{\text {in }}, v_{\text {out }}\right\}$:

Minimum s-t Cut (A, B)

Given: undirected graph $G=(V, E)$, nodes $s, t \in V$
\boldsymbol{s} - \boldsymbol{t} cut: Partition (A, B) of V such that $s \in A, t \in B$
Size of cut $(\boldsymbol{A}, \boldsymbol{B})$: number of edges crossing the cut

Objective: find $s-t$ cut of minimum size
create flow netw. by adding dir. edges of cap. 1

size of cut \longleftrightarrow cap. of cut

Edge Connectivity

Definition: A graph $G=(V, E)$ is k-edge connected for an integer $k \geq 1$ if the graph $\overline{G_{X}}=(V, E \backslash X)$ is connected for every edge set

$$
X \subseteq E,|X| \leq k-1
$$

$$
\text { need to remove at least } \varepsilon \text { egges to disconnect } G
$$

Goal: Compute edge connectivity $\lambda(G)$ of G (and edge set X of size $\lambda(G)$ that divides G into ≥ 2 parts)

- minimum set X " is" a minimum s - t cut for some $\underline{s, t} \in V$
- Actually for all s, t in different components of $G_{X}=(V, E \backslash X) \quad O\left(m^{2}\right)$
- Possible algorithm: fix s and find min $s-t$ cut for all $t \neq s$

Minimum s-t Vertex-Cut

Given: undirected graph $G=(V, E)$, nodes $\underline{\underline{s, t} \in V}$ \boldsymbol{s} - t vertex cut: Set $\underline{\underline{X}} \subset V$ such that $s, t \notin X$ and s and t are in different components of the sub-graph $G[V \backslash X]$ induced by $V \backslash X$

Size of vertex cut: $|X|$

Objective: find $s-t$ vertex-cut of minimum size

- Replace undirected edge $\{u, v\}$ by $(\underline{u, v)}$ and (v, u)
- Compute max s - t flow for edge capacities ∞ and node capacities

$$
c_{v}=1 \text { for } v \neq s, t
$$

- Replace each node v by $v_{\text {in }}$ and $v_{\text {out }}$:

- Min edge cut corresponds to min vertex cut in G

Vertex Connectivity

Definition: A graph $G=(V, E)$ is k-vertex connected for an integer $k \geq 1$ if the sub-graph $G[V \backslash X]$ induced by $V \backslash X$ is connected for every edge set

$$
X \subseteq V,|X| \leq k-1
$$

need to remove at least L nodes to disconnect G

$\frac{\text { vertex concedtivity of } G}{\text { max. } k \text { st. } G \text { is }}$
k-vertex connected

Goal: Compute vertex connectivity $\kappa(G)$ of G
(and node set X of size $\kappa(G)$ that divides G into ≥ 2 parts)

- Compute minimum s - t vertex cut for fixed s and all $t \neq s$

01: test all comb, of $s k t$

Edge-Disjoint Paths

Given: Graph $\underset{\text { unneighted }}{G=(V, E)}$ with nodes $s, t \in V$
Goal: Find as many edge-disjoint s - t paths as possible

Solution:

- Find max s-t flow in G with edge capacities $c_{e}=1$ for all $e \in E$

Flow f induces $|f|$ edge-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get $|f|$ edge-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{\text {in }}(v)=f^{\text {out }}(v)$

Vertex-Disjoint Paths

Given: Graph $G=(V, E)$ with nodes $s, t \in V$

Goal: Find as many internally vertex-disjoint s - t paths as possible

Solution:

- Find max s - t flow in G with node capacities $c_{v}=1$ for all $v \in V$

$$
\text { edge cap. }=\infty
$$

S Flow f induces $|f|$ vertex-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get $|f|$ vertex-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{\text {in }}(v)=f^{\text {out }}(v)$

Menger's Theorem

Theorem: (edge version)

For every graph $G=(V, E)$ with nodes $s, t \in V$, the size of the minimum s - t (edge) cut equals the maximum number of pairwise edge-disjoint paths from s to t.

S Theorem: (node version)
For every graph $G=(V, E)$ with nodes $s, t \in V$, the size of the minimum s - t vertex cut equals the maximum number of pairwise internally vertex-disjoint paths from s to t

- Both versions can be seen as a special case of the max flow min cut theorem

