

Chapter 6 Graph Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

Flow Network

Ford Fulkerson: Running Time

Time of regular Ford-Fulkerson algorithm with integer capacities:

• Time of algorithm with scaling parameter:

 $O(m^2 \log C)$

O(mC)

- $O(\log C)$ is polynomial in the size of the input, but not in n
- Can we get an algorithm that runs in time polynomial in *n*?
- Always picking a shortest augmenting path leads to running time

 $O(m^2n)$

Other Maximum Flow Algorithms

- There are many other algorithms to solve the maximum flow problem, for example:
- Preflow-push algorithm:
 - Maintains a preflow (\forall nodes: inflow \geq outflow)
 - Alg. guarantees: As soon as we have a flow, it is optimal
 - Detailed discussion in 2012/13 lecture
 - Running time of basic algorithm: $O(m \cdot n^2)$
 - Doing steps in the "right" order: $O(n^3)$
- Current best known complexity: $oldsymbol{O}(oldsymbol{m}\cdotoldsymbol{n})$
 - For graphs with $m \ge n^{1+\epsilon}$ (for every constant $\epsilon > 0$)
 - For sparse graphs with $m \leq n^{16/15-\delta}$

[King,Rao,Tarjan 1992/1994]

[Orlin, 2013]

Maximum Flow Applications

- Maximum flow has many applications
- Reducing a problem to a max flow problem can even be seen as an important algorithmic technique
- Examples:
 - related network flow problems
 - computation of small cuts
 - computation of matchings
 - computing disjoint paths
 - scheduling problems
 - assignment problems with some side constraints

— ...

Undirected Edges and Vertex Capacities

Undirected Edges:

• Undirected edge $\{u, v\}$: add edges (u, v) and (v, u) to network

Vertex Capacities:

- Not only edges, but also (or only) nodes have capacities
- Capacity c_v of node $v \notin \{s, t\}$:

$$f^{\rm in}(v) = f^{\rm out}(v) \le \underline{c_v}$$

• Replace node v by edge $e_v = \{v_{in}, v_{out}\}$:

- **Given:** undirected graph G = (V, E), nodes $s, t \in V$
- *s*-*t* cut: Partition (A, B) of V such that $s \in A, t \in B$

Size of cut (A, B): <u>number of edges</u> crossing the cut

Edge Connectivity

Definition: A graph G = (V, E) is <u>k-edge connected</u> for an integer $k \ge 1$ if the graph $G_X = (V, E \setminus X)$ is connected for every edge set $X \subseteq E, |X| \le k - 1.$ Ned to remove at least k edges to disconnect Gedge connectivity $\lambda(G)$: wax k s.t. G is k-edge connected A + Bwax k s.t. G is k-edge connected f = G $\lambda(G) = 2$

Goal: Compute edge connectivity $\lambda(G)$ of G(and edge set X of size $\lambda(G)$ that divides G into ≥ 2 parts)

- minimum set X is a minimum s-t cut for some $\underline{s, t} \in V$ - Actually for all s, t in different components of $G_X = (V, E \setminus X)$ $(\mathcal{X} \models V)$
- Possible algorithm: fix s and find min s-t cut for all $t \neq s$ Algorithm Theory, WS 2015/16 Fabian Kuhn $\Theta(n)$ wax. flow computed to us

Size of vertex cut: |X|

Minimum *s*-*t* Vertex-Cut 📀

Given: undirected graph G = (V, E), nodes $\underline{s, t} \in V$

s-*t* vertex cut: Set $X \subset V$ such that $s, t \notin X$ and s and t are in different components of the sub-graph $G[V \setminus X]$ induced by $V \setminus X$

Objective: find *s*-*t* vertex-cut of minimum size

- Replace undirected edge $\{u, v\}$ by (u, v) and (v, u)
- Compute max s-t flow for edge capacities and node capacities

 $c_v = 1$ for $v \neq s, t$

• Replace each node
$$v$$
 by v_{in} and v_{out}

• Min edge cut corresponds to min vertex cut in G

G

G[S]

Vertex Connectivity

Definition: A graph G = (V, E) is <u>k-vertex connected</u> for an integer $k \ge 1$ if the sub-graph $G[V \setminus X]$ induced by $V \setminus X$ is connected for every edge set

$$X \subseteq V, |X| \leq k - 1.$$

Weed to remove at least E modes to disconnect G
 $Vertex connectivity of G
 $wax. E st. G is$
 k -vestex connected$

Goal: Compute vertex connectivity $\kappa(G)$ of G(and node set X of size $\kappa(G)$ that divides G into ≥ 2 parts)

• Compute minimum s-t vertex cut for fixed s and all $t \neq s$ f(s): test all comb. of skt

Given: Graph G = (V, E) with nodes $s, t \in V$

Goal: Find as many edge-disjoint *s*-*t* paths as possible

Solution:

• Find max s-t flow in G with edge capacities $c_e = 1$ for all $e \in E$

Flow f induces |f| edge-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get |f| edge-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{in}(v) = f^{out}(v)$

Algorithm Theory, WS 2015/16

Fabian Kuhn

Vertex-Disjoint Paths

Given: Graph G = (V, E) with nodes $s, t \in V$

Goal: Find as many internally vertex-disjoint *s*-*t* paths as possible

Solution:

• Find max *s*-*t* flow in *G* with node capacities $c_v = 1$ for all $v \in V$ edge cap: = ∞

- Flow f induces |f| vertex-disjoint paths:
 Integral capacities → can compute integral max flow f
 Get |f| vertex-disjoint paths by greedily picking them
 Correctness follows from flow conservation fⁱⁿ(v) = f^{out}(v)

Menger's Theorem

Theorem: (edge version)

For every graph G = (V, E) with nodes $s, t \in V$, the size of the minimum s-t (edge) cut equals the maximum number of pairwise edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with nodes $s, t \in V$, the size of the minimum <u>s-t</u> vertex cut equals the maximum number of pairwise internally vertex-disjoint paths from s to t

 Both versions can be seen as a special case of the max flow min cut theorem