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Ford Fulkerson: Running Time
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* Time of regular Ford-Fulkerson algorithm with integer capacities:
O(mcC)

* Time of algorithm with scaling parameter:
0(m?log C)

O(log C) is polynomial in the size of the input, but notinn
 Can we get an algorithm that runs in time polynomial in n?

* Always picking a shortest augmenting path leads to running time
0(m®n)
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Other Maximum Flow Algorithms

* There are many other algorithms to solve the maximum flow
problem, for example:

* Preflow-push algorithm:
— Maintains a preflow (V nodes: inflow > outflow)
— Alg. guarantees: As soon as we have a flow, it is optimal
— Detailed discussion in 2012/13 lecture
— Running time of basic algorithm: O0(m - n?)
— Doing steps in the “right” order: 0(n3)

e Current best known complexity: O(m - n)

— For graphs with m > nl*¢ [King,Rao,Tarjan 1992/1994]
(for every constant € > 0)

— For sparse graphs with m < n16/15-6 [Orlin, 2013]
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Maximum Flow Applications
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 Maximum flow has many applications

* Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

* Examples:
— related network flow problems
— computation of small cuts
— computation of matchings
— computing disjoint paths
— scheduling problems
— assignment problems with some side constraints
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Undirected Edges and Vertex Capacities  _
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Undirected Edges: — <% = ___=» @
* Undirected edge {u, v}: add edges (u, v) and (v, u) to network
32 o “
Vertex Capacities: “ /Z 722\wm

* Not only edges, but also (or only) nodes have capacities
* Capacity ¢, of node v & {s, t}:

') = "W <

* Replace node v by edge e, = {Vip, Vout}:

3

]
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‘Minimum s-t Cut @® 4 FX 52

Given: undirected graph ¢ = (V,E), nodes s, t € V
s-t cut: Partition (A,B) of Vsuchthats € A,t € B

Size of cut (A4, B): number of edges crossing the cut

P .t

wam ﬁu'eoogg
Objective: find s-t cut of minimum size

creale Q(oco neso. &57 aﬂ&)u& & @Q%es og - l
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Edge Connectivity
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Definition: A graph G = (V, E) is k-edge connected for an integer
k = 1 if the graph Gy = (V, E \ X) is connected for every edge set
XCE, |X| <k-1
nood & resove a( (easd k& eé}as & oQﬁ(ouMc‘\‘ C

:2“ e&?z couu.o.cg-u\h }\( C )
L&) @@ wax b sd. G.Lak lc-dq( couurcleof
o= 7 Yo AG-2

Goal: Compute edge connectivity A(G) of G
(and edge set X of size A(G) that divides G into = 2 parts)

e minimum set X is a minimum s-t cut for some s,tevVv
— Actually for all s, t in different components of Gy = (V,E \ X) Qm mz')

)

* Possible algorithm: fix s and find min s-t cutforallt # s

pul
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Minimum s-t Vertex-Cut 2 “(x)"_©
G
Given: undirected graph G = (V,E), nodes s,t €V : ;5’537

S
s-t vertex cut: Set X € V suchthats,t € X and sand t are in

different componeir;‘ts of the sub-grz;E)T] G|V : X]induced by IV \ X

—

Size of vertex cut: | X| S &l —30 ¢

— @-—

Objective: find s-t vertex-cut of minimum size

* Replace undirTéted edge {u, v} by (u,v) and (v, u)

 Compute max s-t flow for edge capacitiegand node capacities

¢, =1forv #s,t oy
* Replace each node v by v;, and v ¢: 7 ‘L ;7
ti

[ ————me —

c
|
* Min edge cut corresponds to min vertex cut in G
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Vertex Connectivity
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Definition: A graph ¢ = (V, E) is k-vertex connected for an integer
k = 1if the sub-graph G[V \ X] induced by V' \ X is connected for
every edge set

XCV, |X|<k-1.
need b reweve at (gagt L uodes 0 Lisco uu_o.c‘l' @
\}Q}\-@( Coum@l%v;h :3 G

wax. & s € &
X1zk  k-velex osuckeef

Goal: Compute vertex connectivity k(G ) of G
(and node set X of size k(G) that divides G into = 2 parts)

 Compute minimum s-t vertex cut for fixed sand allt # s

B lest all comb. j s &<
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Edge-Disjoint Paths
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Given: Graph ¢ = (V, E) with nodes S, L tevVv
uuw«gf\tcv(

Goal: Find as many edge-disjoint s-t paths as possible

Solution: =

* Find max s-t flow in G with edge capacitiesc, = 1 foralle € E
= ——

Flow f induces |f| edge-disjoint paths:
* Integral capacities = can compute integral max flow f
p———

* Get |f| edge-disjoint paths by greedily picking them

e Correctness follows from flow conservation f1(v) = f°ut(v)

g@ﬁ
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Vertex-Disjoint Paths
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Given: Graph G = (V,E) withnodes s,t € I/

Goal: Find as many internally vertex-disjoint s-t paths as possible
e

Solution:

* Find max s-t flow in G with node capacitiesc, = 1 forallv eV

-_——

Rlge cap. = <o
Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| vertex-disjoint paths by greedily picking them

e Correctness follows from flow conservation f1(v) = f°ut(v)
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Theorem: (edge version)
For every graph G = (V, E) with nodes s,t € I/, the size of the
minimum s-t (edge) cut equals the maximum number of pairwise

edge-disjoint paths from s to t. . ﬁo

Theorem: (node version)

For every graph G = (V, E) with nodes s,t € I/, the size of the
minimum s-t vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from s to t

* Both versions can be seen as a special case of the max flow min
cut theorem
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