
Chapter 6

Graph Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Flow Network

 𝑠

 𝑥

 𝑢

 𝑦

 𝑣

 𝑤

 𝑞

 𝑧

 𝑡

15
20

20

15

10

10

20

15

20

15

15

15

10

5

20

20

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Ford Fulkerson: Running Time

• Time of regular Ford-Fulkerson algorithm with integer capacities:

𝑂(𝑚𝐶)

• Time of algorithm with scaling parameter:

𝑂 𝑚2log 𝐶

• 𝑂(log 𝐶) is polynomial in the size of the input, but not in 𝑛

• Can we get an algorithm that runs in time polynomial in 𝑛?

• Always picking a shortest augmenting path leads to running time

𝑂(𝑚2𝑛)

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Other Maximum Flow Algorithms

• There are many other algorithms to solve the maximum flow
problem, for example:

• Preflow-push algorithm:
– Maintains a preflow (∀ nodes: inflow ≥ outflow)

– Alg. guarantees: As soon as we have a flow, it is optimal

– Detailed discussion in 2012/13 lecture

– Running time of basic algorithm: 𝑂 𝑚 ⋅ 𝑛2

– Doing steps in the “right” order: 𝑂 𝑛3

• Current best known complexity: 𝑶 𝒎 ⋅ 𝒏
– For graphs with 𝑚 ≥ 𝑛1+𝜖 [King,Rao,Tarjan 1992/1994]

(for every constant 𝜖 > 0)

– For sparse graphs with 𝑚 ≤ 𝑛16 15 −𝛿 [Orlin, 2013]

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Maximum Flow Applications

• Maximum flow has many applications

• Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

• Examples:
– related network flow problems

– computation of small cuts

– computation of matchings

– computing disjoint paths

– scheduling problems

– assignment problems with some side constraints

– …

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Undirected Edges and Vertex Capacities

Undirected Edges:

• Undirected edge {𝑢, 𝑣}: add edges 𝑢, 𝑣 and (𝑣, 𝑢) to network

Vertex Capacities:

• Not only edges, but also (or only) nodes have capacities

• Capacity 𝑐𝑣 of node 𝑣 ∉ {𝑠, 𝑡}:

𝑓in 𝑣 = 𝑓out 𝑣 ≤ 𝑐𝑣

• Replace node 𝑣 by edge 𝑒𝑣 = {𝑣in, 𝑣out}:

 𝑣 𝑣in 𝑣out
𝒄𝒗

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Minimum 𝑠-𝑡 Cut

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 cut: Partition (𝐴, 𝐵) of 𝑉 such that 𝑠 ∈ 𝐴, 𝑡 ∈ 𝐵

Size of cut (𝑨,𝑩): number of edges crossing the cut

Objective: find 𝑠-𝑡 cut of minimum size

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Edge Connectivity

Definition: A graph 𝐺 = 𝑉, 𝐸 is 𝑘-edge connected for an integer
𝑘 ≥ 1 if the graph 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋) is connected for every edge set

𝑋 ⊆ 𝐸, 𝑋 ≤ 𝑘 − 1.

Goal: Compute edge connectivity 𝜆(𝐺) of 𝐺
 (and edge set 𝑋 of size 𝜆(𝐺) that divides 𝐺 into ≥ 2 parts)

• minimum set 𝑋 is a minimum 𝑠-𝑡 cut for some 𝑠, 𝑡 ∈ 𝑉
– Actually for all 𝑠, 𝑡 in different components of 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋)

• Possible algorithm: fix 𝑠 and find min 𝑠-𝑡 cut for all 𝑡 ≠ 𝑠

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Minimum 𝑠-𝑡 Vertex-Cut

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 vertex cut: Set 𝑋 ⊂ 𝑉 such that 𝑠, 𝑡 ∉ 𝑋 and 𝑠 and 𝑡 are in
different components of the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋

Size of vertex cut: |𝑋|

Objective: find 𝑠-𝑡 vertex-cut of minimum size

• Replace undirected edge {𝑢, 𝑣} by (𝑢, 𝑣) and (𝑣, 𝑢)

• Compute max 𝑠-𝑡 flow for edge capacities ∞ and node capacities

𝑐𝑣 = 1 for 𝑣 ≠ 𝑠, 𝑡

• Replace each node 𝑣 by 𝑣in and 𝑣out:

• Min edge cut corresponds to min vertex cut in 𝐺

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Vertex Connectivity

Definition: A graph 𝐺 = 𝑉, 𝐸 is 𝑘-vertex connected for an integer
𝑘 ≥ 1 if the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋 is connected for
every edge set

𝑋 ⊆ 𝑉, 𝑋 ≤ 𝑘 − 1.

Goal: Compute vertex connectivity 𝜅(𝐺) of 𝐺
 (and node set 𝑋 of size 𝜅(𝐺) that divides 𝐺 into ≥ 2 parts)

• Compute minimum 𝑠-𝑡 vertex cut for fixed 𝑠 and all 𝑡 ≠ 𝑠

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Edge-Disjoint Paths

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many edge-disjoint 𝑠-𝑡 paths as possible

Solution:

• Find max 𝑠-𝑡 flow in 𝐺 with edge capacities 𝑐𝑒 = 1 for all 𝑒 ∈ 𝐸

Flow 𝑓 induces 𝑓 edge-disjoint paths:

• Integral capacities  can compute integral max flow 𝑓

• Get 𝑓 edge-disjoint paths by greedily picking them

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣)

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

Vertex-Disjoint Paths

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many internally vertex-disjoint 𝑠-𝑡 paths as possible

Solution:

• Find max 𝑠-𝑡 flow in 𝐺 with node capacities 𝑐𝑣 = 1 for all 𝑣 ∈ 𝑉

Flow 𝑓 induces 𝑓 vertex-disjoint paths:

• Integral capacities  can compute integral max flow 𝑓

• Get 𝑓 vertex-disjoint paths by greedily picking them

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣)

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Menger’s Theorem

Theorem: (edge version)
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the
minimum 𝑠-𝑡 (edge) cut equals the maximum number of pairwise
edge-disjoint paths from 𝑠 to 𝑡.

Theorem: (node version)
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the
minimum 𝑠-𝑡 vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from 𝑠 to 𝑡

• Both versions can be seen as a special case of the max flow min
cut theorem

