
Chapter 6

Graph Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Baseball Elimination

• Only wins/losses possible (no ties), winner: team with most wins

• Which teams can still win (as least as many wins as top team)?

• Boston is eliminated (cannot win):
– Boston can get at most 78 wins, New York already has 81 wins

• If for some 𝑖, 𝑗: 𝑤𝑖 + 𝑟𝑖 < 𝑤𝑗 team 𝑖 is eliminated

• Sufficient condition, but not a necessary one!

Team Wins Losses To Play Against = 𝒓𝒊𝒋

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost.

New York 81 70 11 - 2 4 2 3

Baltimore 79 77 6 2 - 2 1 1

Tampa Bay 79 75 8 4 2 - 1 1

Toronto 76 80 6 2 1 1 - 2

Boston 71 84 7 3 1 1 2 -

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Baseball Elimination

• Can Toronto still finish first?

• Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 4 more times against each other
 if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

• Hence: Toronto cannot finish first

• How about the others? How can we solve this in general?

Team Wins Losses To Play Against = 𝒓𝒊𝒋

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost.

New York 81 70 11 - 2 4 2 3

Baltimore 79 77 6 2 - 2 1 1

Tampa Bay 79 75 8 4 2 - 1 1

Toronto 76 80 6 2 1 1 - 2

Boston 71 84 7 3 1 1 2 -

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Max Flow Formulation

• Can team 3 finish with most wins?

• Team 3 can finish first iff all source-game edges are saturated

1-2

1-4

1-5

2-4

2-5

4-5

game
nodes

 𝒔

1

2

4

5

 𝒕

∞

∞ team
nodes

Remaining number
of games between

the 2 teams

Number of wins team 𝒊 can
have to not beat team 𝟑

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Reason for Elimination

• Detroit could finish with 49 + 27 = 76 wins

• Consider 𝑅 = {NY, Bal, Bos, Tor}
– Have together already won 𝑤 𝑅 = 278 games

– Must together win at least 𝑟 𝑅 = 27 more games

• On average, teams in 𝑅 win
278+27

4
= 76.25 games

Team Wins Losses To Play Against = 𝒓𝒊𝒋

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. Bost. Tor. Detr.

New York 75 59 28 - 3 8 7 3

Baltimore 71 63 28 3 - 2 7 4

Boston 69 66 27 8 2 - 0 0

Toronto 63 72 27 7 7 0 - 0

Detroit 49 86 27 3 4 0 0 -

AL East: Aug 30, 1996

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Reason for Elimination

Certificate of elimination:

𝑅 ⊆ 𝑋, 𝑤 𝑅 ≔ 𝑤𝑖
𝑖∈𝑅

, 𝑟 𝑅 ≔ 𝑟𝑖,𝑗
𝑖,𝑗∈𝑅

Team 𝑥 ∈ 𝑋 is eliminated by 𝑅 if

𝑤 𝑅 + 𝑟(𝑅)

|𝑅|
> 𝑤𝑥 + 𝑟𝑥 .

#wins of
nodes in 𝑅

#remaining games
among nodes in 𝑅

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Minimum Cut

1-2

1-4

1-5

2-4

2-5

4-5
game nodes

 𝒔

1

2

4

5

 𝒕

∞

∞ team
nodes

Remaining number
of games between

the 2 teams

Number of wins team 𝒊 can
have to not beat team 𝟑

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Reason for Elimination

Theorem: Team 𝑥 is eliminated if and only if there exists a subset
𝑅 ⊆ 𝑋 of the teams 𝑋 such that 𝑥 is eliminated by 𝑅.

Proof Idea:

• Minimum cut gives a certificate…

• If 𝑥 is eliminated, max flow solution does not saturate all
outgoing edges of the source.

• Team nodes of unsaturated source-game edges are saturated

• Source side of min cut contains all teams of saturated team-dest.
edges of unsaturated source-game edges

• Set of team nodes in source-side of min cut give a certificate 𝑅

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Circulations with Demands

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

• The circulation problem is a feasibility rather than a maximization
problem

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Circulations with Demands: Formally

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 > 0 for all 𝑒 ∈ 𝐸

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow 𝑑𝑣 and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
 If yes, find such a flow 𝑓.

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Example

-3 2

-3

4

3 3

2

2 2

1 2

2 2

2

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

Condition on Demands

Claim: If there exists a feasible circulation with demands 𝑑𝑣 for
𝑣 ∈ 𝑉, then

 𝑑𝑣
𝑣∈𝑉

= 0.

Proof:

• 𝑑𝑣𝑣 = 𝑓in 𝑣 − 𝑓out 𝑣𝑣

• 𝑓(𝑒) of each edge 𝑒 appears twice in the above sum with
different signs overall sum is 0

Total supply = total demand:

Define 𝑫 ≔ 𝒅𝒗 = −𝒅𝒗
𝒗:𝒅𝒗<𝟎𝒗:𝒅𝒗>𝟎

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Reduction to Maximum Flow

• Add “super-source” 𝑠∗ and “super-sink” 𝑡∗ to network

𝑺 𝑻
-3

-1

-6
3

2

1

4

0 0

0

0

0

0

 𝒔∗ 𝒕∗

𝟑

𝟏

𝟔

𝟏

𝟒

𝟐
𝟑

𝑠∗ supplies
sources

with flow

𝑡∗ siphons
flow out
of sinks

Algorithm Theory, WS 2015/16 Fabian Kuhn 14

Example

-3 2

-3

4

3 3

2

2 2

1 2

2 2

2

 𝒔∗

 𝒕∗

3

3

2

4

3

3

2

4

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

Formally…

Reduction: Get graph 𝐺′ from graph as follows

• Node set of 𝐺′ is 𝑉 ∪ 𝑠∗, 𝑡∗

• Edge set is 𝐸 and edges
– (𝑠∗, 𝑣) for all 𝑣 with 𝑑𝑣 < 0, capacity of edge is 𝑑𝑣

– (𝑣, 𝑡∗) for all 𝑣 with 𝑑𝑣 > 0, capacity of edge is 𝑑𝑣

Observations:

• Capacity of min 𝑠∗-𝑡∗ cut is at most 𝐷 (e.g., the cut 𝑠∗, 𝑉 ∪ {𝑡∗)

• A feasible circulation on 𝐺 can be turned into a feasible flow of
value 𝐷 of 𝐺′ by saturating all (𝑠∗, 𝑣) and (𝑣, 𝑡∗) edges.

• Any flow of 𝐺′ of value 𝐷 induces a feasible circulation on 𝐺
– 𝑠∗, 𝑣 and 𝑣, 𝑡∗ edges are saturated

– By removing these edges, we get exactly the demand constraints

Algorithm Theory, WS 2015/16 Fabian Kuhn 16

Circulation with Demands

Theorem: There is a feasible circulation with demands 𝑑𝑣, 𝑣 ∈ 𝑉
on graph 𝐺 if and only if there is a flow of value 𝐷 on 𝐺′.

• If all capacities and demands are integers, there is an integer
circulation

The max flow min cut theorem also implies the following:

Theorem: The graph 𝐺 has a feasible circulation with demands
𝑑𝑣, 𝑣 ∈ 𝑉 if and only if for all cuts (𝐴, 𝐵),

 𝑑𝑣 ≤ 𝑐(𝐴, 𝐵)

𝑣∈𝐵

.

Algorithm Theory, WS 2015/16 Fabian Kuhn 17

Circulation: Demands and Lower Bounds

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 > 0 and lower bounds 𝟎 ≤ ℓ𝒆 ≤ 𝒄𝒆 for 𝒆 ∈ 𝑬

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: ℓ𝒆 ≤ 𝒇 𝒆 ≤ 𝒄𝒆

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
 If yes, find such a flow 𝑓.

Algorithm Theory, WS 2015/16 Fabian Kuhn 18

Solution Idea

• Define initial circulation 𝑓0 𝑒 = ℓ𝑒
Satisfies capacity constraints: ∀𝑒 ∈ 𝐸: ℓ𝑒 ≤ 𝑓0 𝑒 ≤ 𝑐𝑒

• Define

𝐿𝑣 ≔ 𝑓0
in 𝑣 − 𝑓0

out 𝑣 = ℓ𝑒
𝑒 into 𝑣

− ℓ𝑒
𝑒 out of 𝑣

• If 𝐿𝑣 = 𝑑𝑣, demand condition is satisfied at 𝑣 by 𝑓0, otherwise,
we need to superimpose another circulation 𝑓1 such that

𝑑𝑣
′ ≔ 𝑓1

in 𝑣 − 𝑓1
out 𝑣 = 𝑑𝑣 − 𝐿𝑣

• Remaining capacity of edge 𝑒: 𝑐𝑒
′ ≔ 𝑐𝑒 − ℓ𝑒

• We get a circulation problem with new demands 𝑑𝑣
′ , new

capacities 𝑐𝑒
′ , and no lower bounds

Algorithm Theory, WS 2015/16 Fabian Kuhn 19

Eliminating a Lower Bound: Example

-3 2

-3

4

3 3

2

2 2

Lower bound of 2

-5 2

-1

4

1 3

2

2 2

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

Reduce to Problem Without Lower Bounds

Graph 𝑮 = (𝑽, 𝑬):

• Capacity: For each edge 𝑒 ∈ 𝐸: ℓ𝑒 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

• Demand: For each node 𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Model lower bounds with supplies & demands:

Create Network 𝑮′ (without lower bounds):

• For each edge 𝑒 ∈ 𝐸: 𝑐𝑒
′ = 𝑐𝑒 − ℓ𝑒

• For each node 𝑣 ∈ 𝑉: 𝑑𝑣
′ = 𝑑𝑣 − 𝐿𝑣

 𝑢 𝑣
ℓ𝒆 ≤ 𝒄𝒆

Flow: ℓ𝒆

Algorithm Theory, WS 2015/16 Fabian Kuhn 21

Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in 𝐺 (with lower bounds) if
and only if there is feasible circulation in 𝐺′ (without lower bounds).

• Given circulation 𝑓′ in 𝐺′, 𝑓 𝑒 = 𝑓′ 𝑒 + ℓ𝑒 is circulation in 𝐺
– The capacity constraints are satisfied because 𝑓′ 𝑒 ≤ 𝑐𝑒 − ℓ𝑒

– Demand conditions:

𝑓in 𝑣 − 𝑓out 𝑣 = ℓ𝑒 + 𝑓
′ 𝑒 − ℓ𝑒 + 𝑓

′ 𝑒

𝑒 out of 𝑣𝑒 into 𝑣

 = 𝐿𝑣 + 𝑑𝑣 − 𝐿𝑣 = 𝑑𝑣

• Given circulation 𝑓 in 𝐺, 𝑓′(𝑒) = 𝑓 𝑒 − ℓ𝑒 is circulation in 𝐺′
– The capacity constraints are satisfied because ℓ𝑒 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

– Demand conditions:

𝑓′in 𝑣 − 𝑓′out 𝑣 = 𝑓 𝑒 − ℓ𝑒 − 𝑓 𝑒 − ℓ𝑒
𝑒 out of 𝑣𝑒 into 𝑣

 = 𝑑𝑣 − 𝐿𝑣

Algorithm Theory, WS 2015/16 Fabian Kuhn 22

Integrality

Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:

• Graph 𝐺′ has only integral capacities and demands

• Thus, the flow network used in the reduction to solve
circulation with demands and no lower bounds has only
integral capacities

• The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

• It also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.

Algorithm Theory, WS 2015/16 Fabian Kuhn 23

Matrix Rounding

• Given: 𝑝 × 𝑞 matrix 𝐷 = {𝑑𝑖,𝑗} of real numbers

• row 𝒊 sum: 𝑎𝑖 = 𝑑𝑖,𝑗𝑗 , column 𝒋 sum: 𝑏𝑗 = 𝑑𝑖,𝑗𝑖

• Goal: Round each 𝑑𝑖,𝑗, as well as 𝑎𝑖 and 𝑏𝑗 up or down to the

next integer so that the sum of rounded elements in each row
(column) equals the rounded row (column) sum

• Original application: publishing census data

Example:

3.14 6.80 7.30 17.24

9.60 2.40 0.70 12.70

3.60 1.20 6.50 11.30

16.34 10.40 14.50

3 7 7 17

10 2 1 13

3 1 7 11

16 10 15

original data possible rounding

Algorithm Theory, WS 2015/16 Fabian Kuhn 24

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn’t work

0.35 0.35 0.35 1.05

0.55 0.55 0.55 1.65

0.90 0.90 0.90

0 0 0 0

1 1 1 3

1 1 1

0 0 1 1

1 1 0 2

1 1 1

original data

feasible rounding rounding to nearest integer

Algorithm Theory, WS 2015/16 Fabian Kuhn 25

Reduction to Circulation

3.14 6.80 7.30 17.24

9.60 2.40 0.70 12.70

3.60 1.20 6.50 11.30

16.34 10.40 14.50

 𝒓𝟏

 𝒓𝟐

rows:

 𝒓𝟑

 𝒄𝟏

 𝒄𝟐

 𝒄𝟑

columns:

3,4

2,3 𝑠 𝑡 12,13 10,11

∞

Matrix elements and row/column sums
give a feasible circulation that satisfies
all lower bound, capacity, and demand
constraints

all demands 𝑑𝑣 = 0

Algorithm Theory, WS 2015/16 Fabian Kuhn 26

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Proof:

• The matrix entries 𝑑𝑖,𝑗 and the row and column sums 𝑎𝑖 and 𝑏𝑗

give a feasible circulation for the constructed network

• Every feasible circulation gives matrix entries with corresponding
row and column sums (follows from demand constraints)

• Because all demands, capacities, and flow lower bounds are
integral, there is an integral solution to the circulation problem

 gives a feasible rounding!

