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Baseball Elimination
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Team Wins

v

Losses

7

To Play

ri

Balt.

Against = r;;

T. Bay

New York a1 70 11 - 2 4 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 75 8 4 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 84 A 3 1 1 2 -

* Only wins/losses possible (no ties), winner: team with most wins

* Which teams can still win (as least as many wins as top team)?
* Boston is eliminated (cannot win):

— Boston can get at most 78 wins, New York already has 81 wins

 Ifforsomeli,j:w; +1; < w; - team i is eliminated
— =

» Sufficient condition, but not a necessary one!
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Baseball Elimination
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Team Wins Losses To Play Against = 1;;
i ; ?; ; NY Balt. T. Bay
| New York | 81 70 11 - 2 | (Os| 2 3
Baltimore 79 77 6 2 - 2 1 1
| Tampa Bay J_9 75 8 @s’ 2 - 1 1
Toronto 76 80 5 2 1 1 S 2
Boston 71 84 7 3 1 1 2 -

e (Can Toronto still finish first?

* Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 4 more times against each other
- if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

* Hence: Toronto cannot finish first
* How about the others? How can we solve this in general?
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Max Flow Formulation
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e Canteam ;finish with most wins?

e Oy
'%"

» XT3
o &e \\N?)
Remaining number 4-5 CO team Number of wins team i can
of games between game nodes have to not beat team 3
the 2 teams
nodes

* Team 3 can finish first iff all source-game edges are saturated
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Reason for Elimination L
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Team Wins Losses To Play Against = 1;;
i w; ?; T; Balt. Bost. Tor
New York 75 59 28 - 3 8 7 3 ]
Baltimore 71 63 28 3 - W2 7 4
\\

Boston 69 66 27 8 2 - |76 0
Toronto 63 72 27 7 7 0 - 0

Detroit 49 86 27 3 4 0 0 -

 Detroit could finish with 49 + 27 = Zgwins
. Consider£ = {NY, Bal, Bos, Tor}

— Have together already won w(R) = 278 games
— Must together win at least 7(R) = 27 more games

: . 278427
 On average, teams in R win — = 76.25 games
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Reason for Elimination
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Certificate of elimination:

R C X,
aa . <

?
X~xd

w(R) = ) w;,
— :
LER
e/
#wins of
nodes in R

Team x € X is eliminated by R if

I,jJER
W
Hremaining games
among nodes in R

l

W(R) +7(R)

@D

> Wy T Ty.

e
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cap(AB) = |2 (weind) — w (D) + v(X) —e(R) < (X))
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Reason for Elimination
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Theorem: Team x is eliminated if and only if there exists a subset
R € X of the teams X such that x is eliminated by R.

Proof Idea:
* Minimum cut gives a certificate...

 If xiseliminated, max flow solution does not saturate all
outgoing edges of the source.

 Team nodes of unsaturated source-game edges are saturated

 Source side of min cut contains all teams of saturated team-dest.
edges of unsaturated source-game edges

e Set of team nodes in source-side of min cut give a certificate R
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Circulations with Demands
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Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

* The circulation problem is a feasibility rather than a maximization
problem
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Circulations with Demands: Formally

Given: Directed network G = (V/, E) with
* Edge capacitiesc, > Oforalle € E
* Node demands dzve R forallveV

— d, > 0: node needs flow d,, and therefore is a sink

— =

— d, < 0: node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

—_

Flow: Function f: E = R, satisfying
* Capacity Conditions:Ve € E: 0 < f(e) < c,

 Demand Conditions: Yv € V: f(v) — foU(v) = d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.
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Example
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Condition on Demands
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Claim: If there exists a feasible circulation with demands d,, for

v €V, then
zd

UEV
oa.i'

Proof: A, = fm — L)

Yo dy, = X,(f (W) — fOU(v)) s e

« f(eyof each edge e appears twice in the above sum with
different signs = overall sum is 0

Total supply = total demand:

Define D := Z d, = z —d,,

= v:d,,>0 v:d,,<0

__ﬁ‘—
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Reduction to Maximum Flow
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« Add ”super-s%[ge”:g* and “super-sink” t* to network
9 g,‘uLS

t* siphons
flow out
of sinks

s” supplies
sources
with flow
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Formally...
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Reduction: Get graph G’ from graph as follows
* Nodesetof G'isV U {s*, t*}

 Edgesetis E and edges
— (s%,v) forall v with d,, < 0, capacity of edge is d,,
— (v, t") forall v with d,, > 0, capacity of edge is d,,

Observations:

 Capacity of min s*-t* cut is at most D (e.g., the cut (s*,V U {t*})

* A feasible circulation on G can be turned into a feasible flow of
value D of G’ by saturating all (s*,v) and (v, t*) edges.

* Any flow of G’ of value D induces a feasible circulation on G

— (s*,v) and (v, t*) edges are saturated
— By removing these edges, we get exactly the demand constraints
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Circulation with Demands
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Theorem: There is a feasible circulation with demands d,,, v € VV
on graph G if and only if there is a flow of value D on G'.

* If all capacities and demands are integers, there is an integer
circulation

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands
d,, v € V if and only if for all cuts (4, B),

Zd < c(4,).

p—g

iGe

Algorithm Theory, WS 2015/16 Fabian Kuhn 16



Circulation: Demands and Lower Bounds .
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Given: Directed network G = (V, E) with
* Edge capacities Ce > (0 and lower bounds 0 < £ <c,forecE

* Node demands d € RforallveVlV
— d, > 0: node needs flow and therefore is a sink

— d, < 0: node has a supply of_—iv and is therefore a source

— d, = 0: node is neither a source nor a sink /
2/ 5
Flow: Function f: E = R, satisfyin
e Capacity Conditions: Ve € E:! {, < f(e) <c, N

* Demand Conditions: Vv € V: () — fou(v) =d

—_——————

-/

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.
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Solution Idea S I
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Define initial circulation fo (e) =

Satisfies capacity constraints: Ve E € E: fe < fole) < c,
Q-, = f,cen +£ @

ont
Define £ v — m (*K_ w1 - m (g ( -.{ (v)) o(cu;

N ORI O END WA S

e intov e out of v

If L, = d,,, demand condition is satisfied at v by f,, otherwise,
we need to superimpose another circulation f1 such that

ffn(v) f1OUt(V) = Uy — L.’l’ vao

. ’ . O.S“E‘(QSCQ- ee

Remaining capacity of edge e: c, == c, — fe -——
=

We get a circulation problem with new demands d,,, new
capacities c,, and no lower bounds -
==
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Eliminating a Lower Bound: Example
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Lower bound of 2

3
3
2 > 2 j>-5 > 2
2 2 2
4 4
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Reduce to Problem Without Lower Bounds _
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Graph G = (V,E):
* Capacity: Foreachedgee € E: ¥, < f(e) < c,
 Demand: For each node v € V: fi(v) — foU(v) = d

Model lower bounds with supplies & demands:

va fj(v) —,CA.(\:) @ te < C, )@

Flow: £,

T—

Create Network G’ (without lower bounds):
* Foreachedgee € E: ce—ce—f
* Foreachnodev eV: d’ = d — L

X

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

FREIBURG



EIBURG

Circulation: Demands and Lower Bounds  _:.
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Theorem: There is a feasible circulation in G (with lower bounds) if
and only if there is feasible circulation inﬁ' (without lower bounds).

—

* Given circulation f in G f(e) =f'(e) + f is circulation in G

— The capacity constraints are satisfied because f' (e) <c,— "1,
— Demand conditions:

fr@) = W = Y Gt fE) = Y (et fE)

eintov e out of v

=L,+(d,—L,)=d
 Given circulation fin G, f'(e) = f(e) — £, is circulation in G’
— The capacity constraints are satisfied because £, < f(e) < c,
— Demand conditions:

f’i“(v) _f/out(v) — z (f (6) — fe) — z (f (e) — fe)

e intov e out of v
— dv - Lv
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Integrality
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Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:

. Graphg’ has only integral capacities and demands

 Thus, the flow network used in the reduction to solve
circulation with demands and no lower bounds has only
integral capacities

* The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

(Foud Tullassaw)
* It also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.
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Matrix Rounding
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* Given: p X q matrix D = {d; ;} of real numbers

* rowisum: a; = Z] di,jl columnj sum:. b] — Zi di’j

* Goal: Round each d; ;, as well as a; and b; up or down to the

next integer so that the sum of rounded elements in each row
(column) equals the rounded row (column) sum

e Original application: publishing census data

=

Example: |

original data possible rounding
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Matrix Rounding
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Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn’t work

original data

0 0 0
1

rounding to nearest integer feasible rounding
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Reduction to Circulation
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Matrix elements and row/column sums
give a feasible circulation that satisfies

all lower bound, capacity, and demand

constraints

columns:

=
all demands d,, = 0
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Matrix Rounding  watdina
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Theorem: For any matrix, there exists a feasible rounding.

Proof:

* The matrix entries d; ; and the row and column sums a; and b;
give a feasible circulation for the constructed network

* Every feasible circulation gives matrix entries with corresponding
row and column sums (follows from demand constraints)

* Because all demands, capacities, and flow lower bounds are
integral, there is an integral solution to the circulation problem

K_ —> gives a feasible roundingj
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