

Chapter 6 Graph Algorithms Applications of Max How Algorithm Theory WS 2015/16

Fabian Kuhn

Baseball Elimination

		<u> </u>						
Team	Wins	Losses	To Play	Against = r_{ij}				
i	w _i	ℓ_i	r _i	NY	Balt.	Т. Вау	Tor.	Bost.
New York	81	70	11	-	2	4	2	3
Baltimore	79	77	6	2	-	2	1	1
Tampa Bay	79	75	8	4	2	-	1	1
Toronto	76	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Only wins/losses possible (no ties), winner: team with most wins
- Which teams can still win (as least as many wins as top team)?
- Boston is eliminated (cannot win):

- Boston can get at most 78 wins, New York already has 81 wins

- If for some $i, j: w_i + r_i < w_j \rightarrow \text{team } i$ is eliminated
- Sufficient condition, but not a necessary one!

Algorithm Theory, WS 2015/16

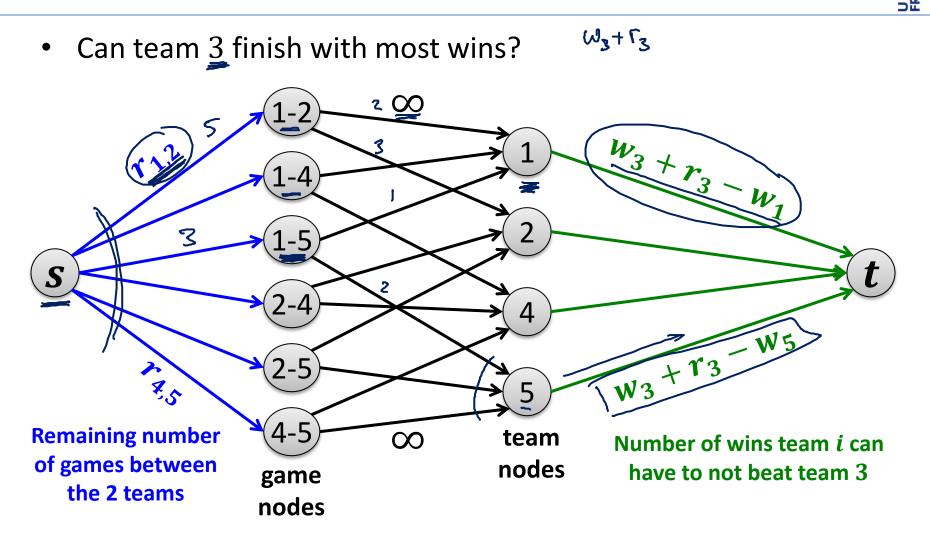
Fabian Kuhn

Baseball Elimination

Team	Wins	Losses	To Play	Against = r_{ij}				
i	W _i	ℓ_i	r _i	NY	Balt.	Т. Вау	Tor.	Bost.
J New York	81	70	11	-	2	5	2	3
Baltimore	79	77	6	2	-	2	1	1
Tampa Bay	79	75	8	35	2	-	1	1
Toronto	<u>76</u>	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Can Toronto still finish first?
- Toronto can get 82 > 81 wins, but: NY and Tampa have to play 4 more times against each other
 → if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins
- Hence: Toronto cannot finish first
- How about the others? How can we solve this in general?

Max Flow Formulation



Teams 1,..., 5

• Team 3 can finish first iff all source-game edges are saturated

Reason for Elimination

AL East: Aug 30, 1996

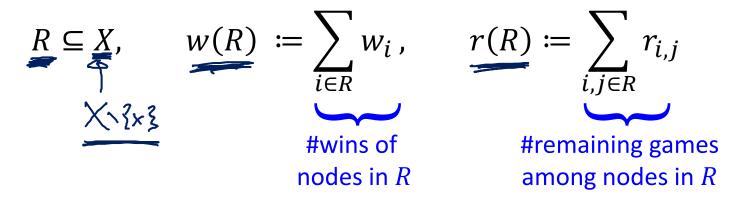
	Team	Wins	Losses	To Play	Against = r_{ij}				
_	i	w _i	l _i	r _i	NY	Balt.	Bost.	Tor.	Detr.
F	New York	75	59	28	-	3	8	7	3 -
	Baltimore	71	63	28	3	- `	2	7	4
	Boston	69	66	27	8	2	-	\$	0
	Toronto	63	72	27	7	7	0	-	0
	Detroit	49	86	27	3	4	0	0	-

- Detroit could finish with 49 + 27 = 76 wins
- Consider $R = \{NY, Bal, Bos, Tor\}$
 - Have together already won $w(R) = \frac{278}{278}$ games
 - Must together win at least r(R) = 27 more games
- On average, teams in R win $\frac{278+27}{4} = 76.25$ games

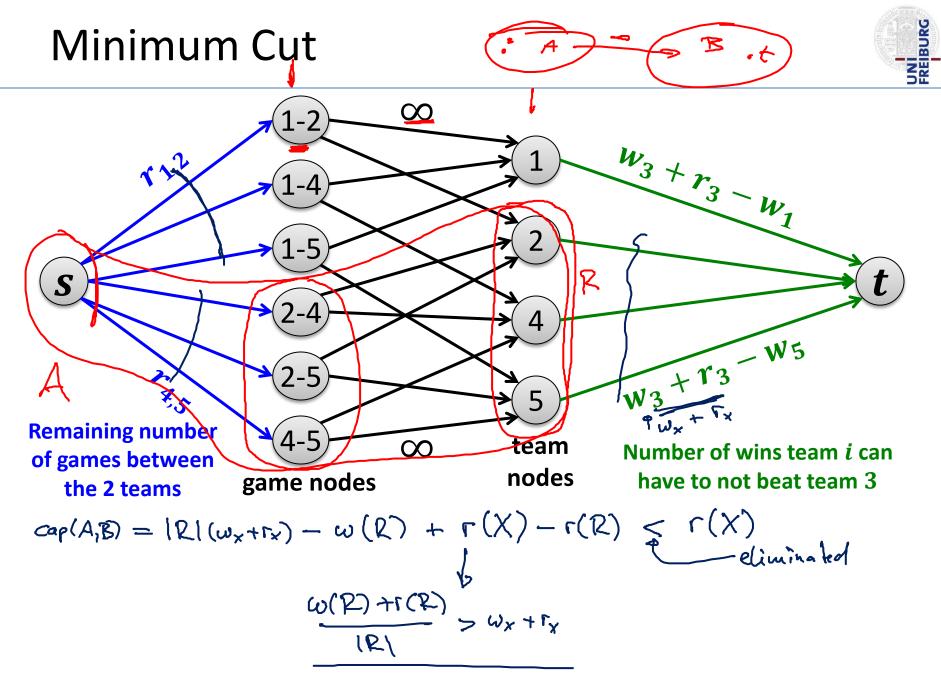
Algorithm Theory, WS 2015/16

Fabian Kuhn

Certificate of elimination:



Team $x \in X$ is eliminated by R if w(R) + r(R) $R > w_x + r_x$.



Algorithm Theory, WS 2015/16

Reason for Elimination

Theorem: Team x is eliminated if and only if there exists a subset $R \subseteq X$ of the teams X such that x is eliminated by R.

Proof Idea:

- Minimum cut gives a certificate...
- If x is eliminated, max flow solution does not saturate all outgoing edges of the source.
- Team nodes of unsaturated source-game edges are saturated
- Source side of min cut contains all teams of saturated team-dest. edges of unsaturated source-game edges
- Set of team nodes in source-side of min cut give a certificate *R*

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that <u>source supplies</u> and sink demands are exactly satisfied

The circulation problem is a <u>feasibility rather</u> than a maximization problem

Circulations with Demands: Formally

Given: Directed network G = (V, E) with

- Edge capacities $c_e > 0$ for all $e \in E$
- Node demands $\underline{d_v} \in \mathbb{R}$ for all $v \in V$
 - $-d_v > 0$: node needs flow d_v and therefore is a sink
 - $-d_v < 0$: node has a supply of $-d_v$ and is therefore a source
 - $d_v = 0$: node is neither a source nor a sink

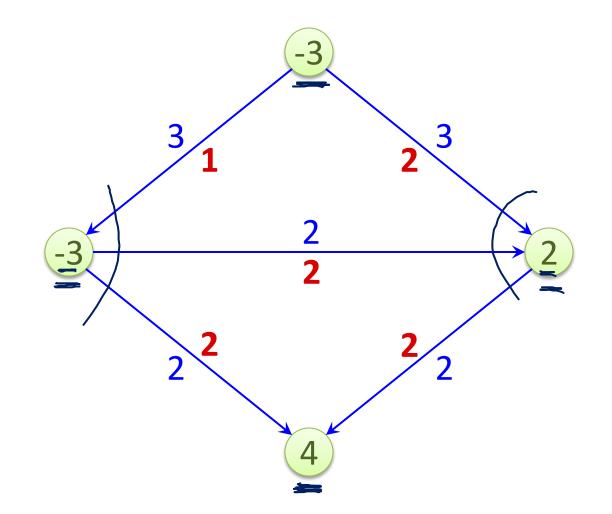
Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E: \quad 0 \leq f(e) \leq c_e$
- Demand Conditions: $\forall v \in V$: $f_{\underline{in}(v)} f_{\underline{out}(v)} = \underline{d_v}$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Algorithm Theory, WS 2015/16

Example



Condition on Demands

FREIBURG

Claim: If there exists a feasible circulation with demands d_v for $v \in V$, then

 $d_v = 0.$

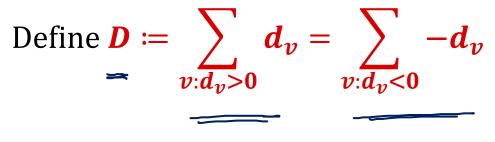
 $d_v = f(v) - f(v)$

Proof:

•
$$\sum_{\nu} d_{\nu} = \sum_{\nu} (f^{\text{in}}(\nu) - f^{\text{out}}(\nu))$$

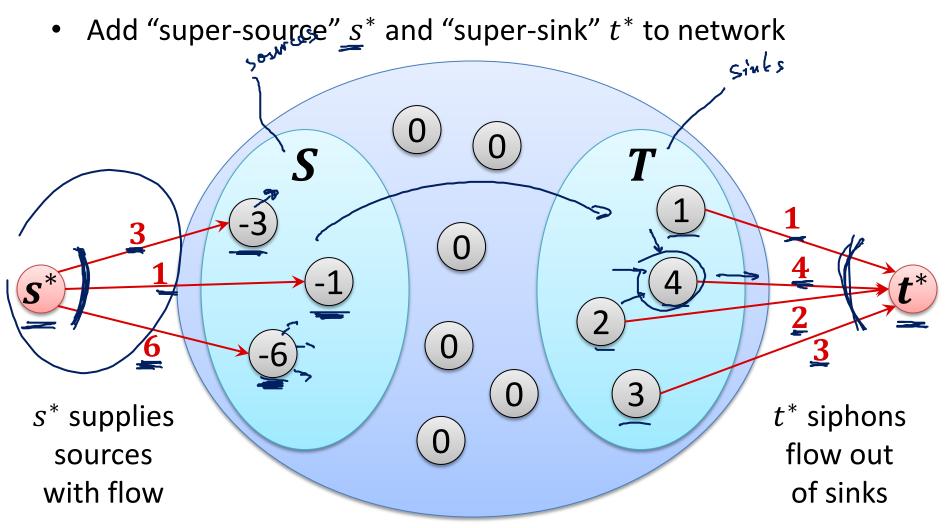
f(e) of each edge *e* appears twice in the above sum with different signs → overall sum is 0

Total supply = total demand:

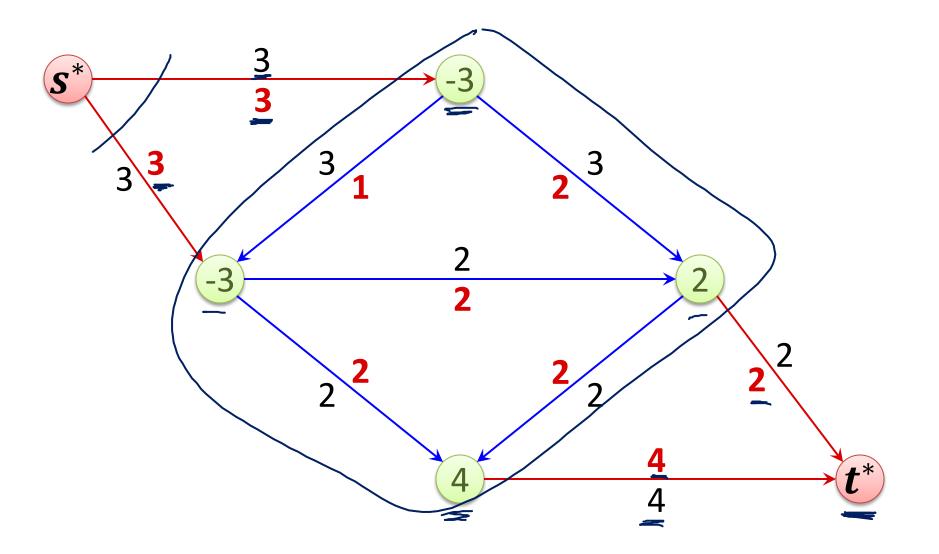


Fabian Kuhn

Reduction to Maximum Flow



Example



Formally...

Reduction: Get graph G' from graph as follows

- Node set of G' is $V \cup \{s^*, t^*\}$
- Edge set is *E* and edges
 - $-(s^*, v)$ for all v with $d_v < 0$, capacity of edge is d_v
 - (v, t^*) for all v with $d_v > 0$, capacity of edge is d_v

Observations:

- Capacity of min s^*-t^* cut is at most D (e.g., the cut $(s^*, V \cup \{t^*\})$
- A feasible circulation on G can be turned into a feasible flow of value D of G' by saturating all (s*, v) and (v, t*) edges.
- Any flow of G' of value D induces a feasible circulation on G
 - (s^*, v) and (v, t^*) edges are saturated
 - By removing these edges, we get exactly the demand constraints

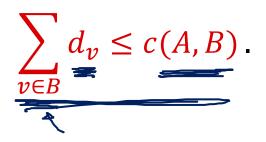
Circulation with Demands

Theorem: There is a feasible circulation with demands $d_v, v \in V$ on graph G if and only if there is a <u>flow of</u> value D on G'.

If all capacities and demands are integers, there is an integer circulation

The max flow min cut theorem also implies the following:

Theorem: The graph <u>G</u> has a feasible circulation with demands $d_v, v \in V$ if and only if for all cuts (A, B),



 \mathbb{Z}

Circulation: Demands and Lower Bounds

Given: Directed network G = (V, E) with

- Edge capacities $c_e > 0$ and lower bounds $0 \le \ell_e \le c_e$ for $e \in E$
- Node demands $d_v \in \mathbb{R}$ for all $v \in V$
 - $d_{v} > 0$: node needs flow and therefore is a sink
 - $-d_v < 0$: node has a supply of $-d_v$ and is therefore a source
 - $d_v = 0$: node is neither a source nor a sink

Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E: \ \underline{\ell_e} \leq f(e) \leq c_e$
- Demand Conditions: $\forall v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

2

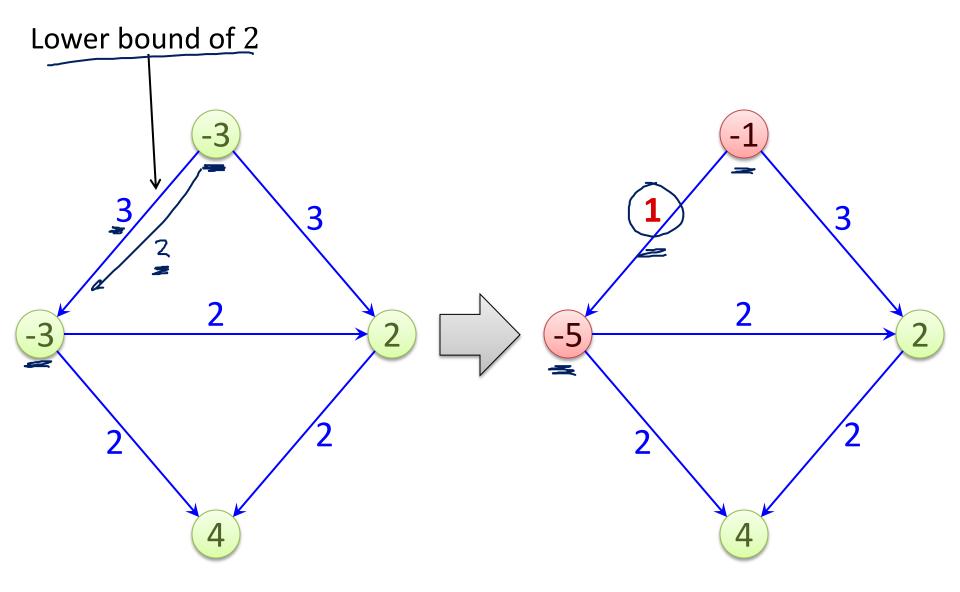
Solution Idea

- Define initial circulation $f_0(e) = \ell_e$ Satisfies capacity constraints: $\forall e \in E: \ell_e \leq f_0(e) \leq c_e$ • Define $f_{v}(e) = \ell_v(e) + \ell_v(e)$ $\ell_v(v) - \ell_v(v) = (\ell_v(v) - \ell_v(v)) + \ell_v(v) - \ell_v(v) = \ell_e$ $\ell_v := f_0^{in}(v) - f_0^{out}(v) = \sum_{e \text{ into } v} \ell_e - \sum_{e \text{ out of } v} \ell_e$
- If $\underline{L_v = d_v}$, demand condition is satisfied at v by f_0 , otherwise, we need to superimpose another circulation f_1 such that

$$d'_{v} \coloneqq f_{1}^{\text{in}}(v) - f_{1}^{\text{out}}(v) = d_{v} - L_{v}$$

- Remaining capacity of edge $e: c'_e \coloneqq c_e \ell_e$
- We get a circulation problem with new demands d'_{v} , new capacities c'_{e} , and no lower bounds

Eliminating a Lower Bound: Example



Reduce to Problem Without Lower Bounds NI

Graph G = (V, E):

- Capacity: For each edge $e \in E: \ell_e \leq f(e) \leq c_e$
- Demand: For each node $v \in V$: $f^{in}(v) f^{out}(v) = d_n$

Model lower bounds with supplies & demands:

Create Network G' (without lower bounds):

- For each edge $e \in E: c'_e = c_e \ell_e$ For each node $v \in V: d'_v = d_v L_v$

Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in \underline{G} (with lower bounds) if and only if there is feasible circulation in $\underline{G'}$ (without lower bounds).

- Given circulation $\underline{f'}$ in G', $f(e) = \underline{f'(e)} + \underline{\ell_e}$ is circulation in G
 - The capacity constraints are satisfied because $\overline{f'(e)} \le c_e \ell_e$
 - Demand conditions:

$$f^{\text{in}}(v) - f^{\text{out}}(v) = \sum_{e \text{ into } v} (\ell_e + f'(e)) - \sum_{e \text{ out of } v} (\ell_e + f'(e))$$
$$= L_v + (d_v - L_v) = d_v$$

- Given circulation f in G, $f'(e) = f(e) \ell_e$ is circulation in G'
 - The capacity constraints are satisfied because $\ell_e \leq f(e) \leq c_e$
 - Demand conditions:

$$f^{\prime \text{in}}(v) - f^{\prime \text{out}}(v) = \sum_{e \text{ into } v} (f(e) - \ell_e) - \sum_{e \text{ out of } v} (f(e) - \ell_e)$$
$$= d_v - L_v$$

Algorithm Theory, WS 2015/16

Fabian Kuhn

Integrality

Theorem: Consider a circulation problem with integral capacities, flow lower bounds, and node demands. If the problem is feasible, then it also has an integral solution.

Proof:

- Graph \underline{G}' has only integral capacities and demands
- Thus, the flow network used in the reduction to solve circulation with demands and no lower bounds has only integral capacities
- The theorem now follows because a max flow problem with integral capacities also has an optimal integral solution

• It also follows that with the max flow algorithms we studied, we get an integral feasible circulation solution.

Matrix Rounding

- **Given**: $\underline{p \times q}$ matrix $D = \{d_{i,j}\}$ of real numbers
- row *i* sum: $\underline{a_i} = \sum_j d_{i,j}$, column *j* sum: $\underline{b_j} = \sum_i d_{i,j}$
- **Goal:** Round each $d_{i,j}$, as well as a_i and b_j up or down to the next integer so that the sum of rounded elements in each row (column) equals the rounded row (column) sum
- Original application: publishing census data

Example:

	-		
<u>3.1</u> 4	6.80	7.30	17.24
9.60	2.40	0 <u>.7</u> 0	12.70
<u>3.6</u> 0	1.20	6.50	11.30
16.34	10.40	14.50	

3		
10	 2	
3	1	
16	10	

original data

possible rounding

1

7

15

Algorithm Theory, WS 2015/16

17

13

11

Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn't work

0.35	0.35	0.35	1.05
0.55	0.55	0.55	1.65
0.90	0.90	0.90	

original data

0	0	0	0
1	1	1	3 N
1	1	1	

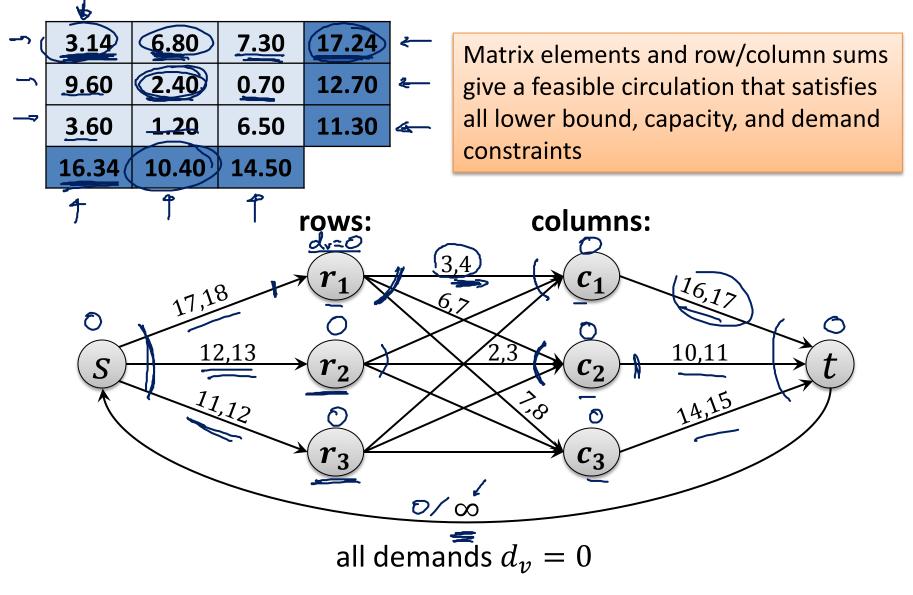
rounding to nearest integer

0	0	1	<u>1</u>
1	1	0	2
1	1	1	

feasible rounding

Algorithm Theory, WS 2015/16

Reduction to Circulation



Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Proof:

- The matrix entries $d_{i,j}$ and the row and column sums a_i and b_j give a feasible circulation for the constructed network
- Every feasible circulation gives matrix entries with corresponding row and column sums (follows from demand constraints)
- Because all demands, capacities, and flow lower bounds are integral, there is an integral solution to the circulation problem

