)

Chapter 5

UNI
!

FREIBURG

Graph Algorithms

ﬂ’t Q\Lcﬂ»\\\v\i

Algorithm Theory

WS 2014/15

Fabian Kuhn

L

WWO&V& //Dec 70

Txeicizes

(LtIY_ }690

i
Dangdi3ydd
INN

Matching

Fabian Kuhn

Algorithm Theory, WS 2014/15

Gifts-Children Graph

UNI

FREIBURG

 Which child likes which gift can be represented by a graph

b J

Algorithm Theory, WS 2014/15 Fabian Kuhn

Matching

UNI
I

FREIBURG

Matching: Set of pairwise non-incident edges

%

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size "/, (every node is matched)

Algorithm Theory, WS 2014/15 Fabian Kuhn 4

UNI
I

FREIBURG

Bipartite Graph (/Mz

Definition: A graph G = (V, E) is called bipartite iff its node set
can be partitioned into two parts I/ = Vl v Vz such that for each

edge {u,v} € E,
|{u)v} N Vll = 1.

 Thus, edges are only between the two parts

O

E
4 £

Algorithm Theory, WS 2014/15 Fabian Kuhn

Santa’s Problem

|
IBURG

Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

Clearly, every matching
is at most as big

If #children = #gifts,
there is a solution iff
there is a perfect matching

Algorithm Theory, WS 2014/15 Fabian Kuhn

o [')K H_)

L 3
L .

L

Reducing to Maximum Flow

UNI

FREIBURG

e Like edge-disjoint paths...

all capacities are 1

Algorithm Theory, WS 2014/15 Fabian Kuhn

Reducing to Maximum Flow

UNI

FREIBURG

Theorem: Every integer solution to the max flow problem on the
constructed graph induces a maximum bipartite matching of G.

Proof:

1. An integelg\flg\g(ﬁ(otaﬂélué@ﬁl indlacesa matching of size |f|

— Left nodes (gifts) aVQ| o cap city.1
Gt s P
— Rightn es“(@hll ren) have outgomg capaC|ty 1

— Leftand rlght n desé_qglncdpl/elpt_tgﬁu]}jgdge e of G with f(e) =1

2. A matching of size k implies a flow f of value |f| = k
— For each edge {u, v} of the matching:

f(sw) = f(wn) =f(w,0) =1

— All other flow values are 0

Algorithm Theory, WS 2014/15 Fabian Kuhn

Running Time of Max. Bipartite Matching _

UNI
FREIBURG

Theorem: A maximum matching of a bipartite graph can be
computed in time O(m - n).

e f\.;w(:Fuqusow3

| embay o O(w)

n
o der swe og WAQ i\ WAty wmfc@tlug <75

Algorithm Theory, WS 2014/15 Fabian Kuhn 9

Perfect Matching?

UNI
FREIBURG

e There can only be a perfect matching if both sides of the
partition have size /,.

——

f——

* There is no perfect matching, iff there is an s-t cut of
size < "/, in the flow network.

Algorithm Theory, WS 2014/15 Fabian Kuhn 10

FREIBURG

s-t Cuts

UNI

Partition (4, B) of node set suchthats € Aandt € B
e Ifv; € A:edge (v;,t)isincut (4,B)
 Ifu; € B:edge (s,u;)isincut (4, B)

e Otherwise (if u; € A, v; € B), all edges from u; to some
v; € B areincut (4,B)

Algorithm Theory, WS 2014/15 Fabian Kuhn 11

Hall’'s Marriage Theorem

UNI
FREIBURG

Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if T

vU' € U:IN(U")| > |U'], J

where N(U") € V is the set of neighbors of nodes in U'.

Proof: .N&opeﬁfe_ct matching < some s-t cut has capacity < n/2
1. Assume thereis U’ for which [N(U")| < |U']: N

Algorithm Theory, WS 2014/15 Fabian Kuhn 12

MQJ]‘0 s(c.ow

Hall’'s Marriage Theorem 3u/. (o) < (U]

UNI
FREIBURG

Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U)| = U],
where N(U") € V is the set of neighbors of nodes in U'.

G~
Proof: No perfect matching <=> some s-t cut has capacity < n/2

2. Assume that there is a cut (A B) of capacity < n/2

o n
N <y + - g Ny
Z
—2 O C
n

(5 O x+y+z<=0- 0

* - @
Algorithm Theory, WS 2014/15 ‘ Fabian Kuhn @ 13

Hall’s Marriage Theorem

UNI
FREIBURG

Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U)| = U],
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n
2. Assume that thereis a cut (4, B) of capacity < n

n
U'| ==—x
- £ INW)] < (W'
INU)|<y+z /

n 2 \
x+y+z<§ a—-o\g+2<z-><=[u|

\(~——
o 2N

Algorithm Theory, WS 2014/15 Fabian Kuhn 14

UNI

What About General Graphs

FREIBURG

e Can we efficiently compute a maximum matching if G is not
bipartite?

e How good is a maximal matching?

— A matching that cannot be extended...

Vertex Cover: setﬁ C V of nodes such that
vi{u,v} € E, fu,vins + Q.

<o

A vertex cover covers all edges by incident nodes

Algorithm Theory, WS 2014/15 Fabian Kuhn 15

Vertex Cover vs Matching

|
FRE:BURG

UNI

Consider a matching M and a vertex cover S

Claim: |[M| < |S]
eee——
Proof:

v -—
7\
V\""- — -

* Atleast one node of every edge {u, v} € Misin S

 Needs to be a different node for different edges from M

Algorithm Theory, WS 2014/15

Fabian Kuhn

/
t /
S

/

{

16

Vertex Cover vs Matching

|
FRE:BURG

UNI

Consider a matching M and a vertex cover S

Claim: If M is maximal and S is minimum, |S| < 2|M|

Proof:

e M is maximal: for every edge {u, v} € E, either u or v (or both)
are matched

@ < @e
€ 2 Z ? =

e Everyedge e € E is “covered” by at least one matching edge

 Thus, the set of the nodes of all matching edges gives a vertex
cover S of size |S| = 2|M|.

Algorithm Theory, WS 2014/15 Fabian Kuhn 17

Maximal Matching Approximation

UNI
FREIBURG

Theorem: For any maximal matching M and any maximum matching
M™, it holds that

2" Q‘ﬁ’ﬂ”c} waa “L\"""'

—

Proof: St opt. verk. coven

—

Theorem: The set of all matched nodes of a maximal matching M is
a vertex cover of size at most twice the size of a min. vertex cover.

Algorithm Theory, WS 2014/15 Fabian Kuhn 18

Augmenting Paths

UNI
I

FREIBURG

Consider a matching M of agraph G = (V, E):
e Anodev € Viscalled free iff it is not matched

—

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in E \ M and edges in M alternatingly.

free nodes

e Matching M can be improved using an augmenting path by
switching the role of each edge along the path

Algorithm Theory, WS 2014/15 Fabian Kuhn 19

UNI

Augmenting Paths

FREIBURG

Theorem: A matching M of G = (V, E) is maximum if and only if
there is no augmenting path.

Proof:
e Consider non-max. matchingﬂ and max. matchingl\f and define
F:=M\M", F*:=M"\M

ou— m—

* Notethat FNF*=@and |F| < |F"| (because Ml (M)
e Each node v € V isincident to at most one edge in both F and F~*

e F U F"induces even cycles and paths

Qw_ Wt U¥ sy N Ms

Algorithm Theory, WS 2014/15 Fabian Kuhn 20

Finding Augmenting Paths

UNI
FREIBURG

— free nodes

/

odd cycle

Algorithm Theory, WS 2014/15 Fabian Kuhn 21

Blossoms

UNI
I

FREIBURG

e |f we find an odd cycle...

free node)

Graph G

Matching M
== contract
T blossom @\
contracted blossom

Graph G'

Y
wals

Matching M M =M\ {e,e'}
is a matchmg of G'.

blossom
Algorithm Theory, WS 2014/15 Fabian Kuhn 22

Contracting Blossoms

UNI
FREIBURG

)

Lemma: Graph G has an augmenting path w.r.t. matching M iff G’
has an augmenting path w.r.t. matching M’ — ~

AU Txf’éﬁ f f

|
)

N

S

ﬂote: If stem has le

root v of blossom is free
and thus also the node v’
is free in G'.

»
Ruive . Popin,

Also: The matching M can be computed efficiently from M.

Algorithm Theory, WS 2014/15 Fabian Kuhn 23

Edmond’s Blossom Algorithm

UNI
I

FREIBURG

Algorithm Sketch:
1. Build a tree for each free node V

2. Starting from an explored node u at even distance from a free
node f in the tree of f, explore some unexplored edge {u, v}:

e

1. Ifvisanunexplored node, v is matched to some neighbor w:
add w to the tree (w is now explored)

2. Ifvisexplored and in the same tree:

at odd distance from root —> ignore and move on

at even distance from root = blossom found

e

3. Ifvisexplored and in another tree
at odd distance from root —> ignore and move on
at even distance from root - augmenting path found

Algorithm Theory, WS 2014/15 Fabian Kuhn 24

Running Time

UNI

FREIBURG

Finding a Blossom: Repeat on smaller graph
Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time 0 (mn?).
413: Otubu«. (w.& (Wﬁl(ﬁ'ﬂ:b\& "“"Y’O"“‘*““{Q = é
\ rilméﬁ&v\ "O(‘M>
“h‘— @Xglomégﬁ‘hs ?&S QU\SIM. (/(,. s =S

NS

Algorithm Theory, WS 2014/15 Fabian Kuhn

25

Matching Algorithms

UNI
FREIBURG

We have seen:
e O(mn) time alg. to compute a max. matching in bipartite graphs

. O(mnz) time alg. to compute a max. matching in general graphs

Better algorithms:

e Best known running time (bipartite and general gr.): O(m\/ﬁ)

Weighted matching:
 Edges have weight, find a matching of maximum total weight

e Bipartite graphs: flow reduction works@ﬂ@@&m@&@>

e General graphs: can also be solved in polynomial time
— (Edmond’s algorithms is used as blackbox)

Algorithm Theory, WS 2014/15 Fabian Kuhn 26

