

Chapter 5 Graph Algorithms

Matching

Algorithm Theory

WS 2014/15 Monday, Dec 22
Exercises
1415-1600

Gifts-Children Graph

• Which child likes which gift can be represented by a graph

Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size n/2 (every node is matched)

Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set can be partitioned into two parts $V = V_1 \cup V_2$ such that for each edge $\{u, v\} \in E$,

$$|\{u,v\} \cap V_1| = 1.$$

Thus, edges are only between the two parts

Santa's Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift iff there is a matching of size #children

Clearly, every matching is at most as big

If #children = #gifts, there is a solution iff there is a perfect matching

Reducing to Maximum Flow

Like edge-disjoint paths...

all capacities are 1

Reducing to Maximum Flow

Theorem: Every integer solution to the max flow problem on the constructed graph induces a maximum bipartite matching of G.

Proof:

- 1. An integer flow f of value of inchances a matching of size |f|
 - Left nodes (gifts) have incoming capacity 1
 Right nodes (children) have outgoing capacity 1

 - Left and right nodes are incident to full edge e of G with f(e)=1
- 2. A matching of size k implies a flow f of value |f| = k
 - For each edge $\{u, v\}$ of the matching:

$$f((s,u)) = f((u,v)) = f((v,t)) = 1$$

All other flow values are 0

Running Time of Max. Bipartite Matching

Theorem: A maximum matching of a bipartite graph can be computed in time $O(m \cdot n)$.

use Ford Fulkason:

| iteration:
$$O(m)$$

iter: Size of maximum matching $\leq \frac{n}{2}$

Perfect Matching?

- There can only be a perfect matching if both sides of the partition have size n/2.
- There is no perfect matching, iff there is an s-t cut of size < n/2 in the flow network.

s-t Cuts

Partition (A, B) of node set such that $s \in A$ and $t \in B$

- If $v_i \in A$: edge (v_i, t) is in cut (A, B)
- If $u_i \in B$: edge (s, u_i) is in cut (A, B)
- Otherwise (if $u_i \in A$, $v_i \in B$), all edges from u_i to some $v_i \in B$ are in cut (A, B)

Hall's Marriage Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if

 $\forall \underline{U}' \subseteq \underline{U}: |\underline{N}(\underline{U}')| \geq |\underline{U}'|,$ where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n/2

1. Assume there is U' for which |N(U')| < |U'|:

Hall's Marriage Theorem $\exists u' : |N(u')| < |u'|$

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V|has a perfect matching if and only if

$$\forall U' \subseteq U: |N(U')| \geq |U'|,$$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n/2

2. Assume that there is a cut (A, B) of capacity < n/2

Hall's Marriage Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if

$$\forall U' \subseteq U: |N(U')| \geq |U'|,$$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n

2. Assume that there is a cut (A, B) of capacity < n

$$|U'| = \frac{n}{2} - x$$

$$|N(U')| \le y + z$$

$$x + y + z < \frac{n}{2} \implies y + z < \frac{n}{z} - x = |U'|$$

$$\geq |N(u')|$$

What About General Graphs

- Can we efficiently compute a maximum matching if G is not bipartite?
- How good is a maximal matching?
 - A matching that cannot be extended...
- Vertex Cover: set $\underline{S} \subseteq V$ of nodes such that $\forall \{\overline{u}, v\} \in \underline{E}, \quad \{u, v\} \cap \underline{S} \neq \emptyset.$

A vertex cover covers all edges by incident nodes

Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: $|M| \leq |S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from M

Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: If M is maximal and S is minimum, $|S| \le 2|M|$

Proof:

• M is maximal: for every edge $\{\underline{u}, v\} \in E$, either u or v (or both) are matched

- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size |S| = 2|M|.

Maximal Matching Approximation

Theorem: For any maximal matching M and any maximum matching

 M^* , it holds that

2-approximation

Proof:

$$S^*: opt. vert. cover$$
 $lem.1$
 $lem.2$
 $|M^*| \leq |S^*| \leq 2|M|$

Theorem: The set of all matched nodes of a maximal matching M is a vertex cover of size at most twice the size of a min. vertex cover.

Augmenting Paths

Consider a matching M of a graph G = (V, E):

• A node $v \in V$ is called **free** iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \setminus M$ and edges in M alternatingly.

alternating path

 Matching M can be improved using an augmenting path by switching the role of each edge along the path

Augmenting Paths

Theorem: A matching M of G = (V, E) is maximum if and only if there is no augmenting path.

Proof:

• Consider non-max. matching M and max. matching M^* and define

$$\underline{F} \coloneqq \underline{M} \setminus \underline{M}^*, \qquad \underline{F}^* \coloneqq \underline{M}^* \setminus \underline{M}$$

- Note that $F \cap F^* = \emptyset$ and $|F| < |F^*|$ (because $|M| < |M^*|$)
- Each node $v \in V$ is incident to at most one edge in both F and F^*
- $F \cup F^*$ induces even cycles and paths

Finding Augmenting Paths

Blossoms

• If we find an odd cycle...

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G'

Also: The matching M can be computed efficiently from M'.

Edmond's Blossom Algorithm

Algorithm Sketch:

- 2. Starting from an explored node u at even distance from a free node f in the tree of f, explore some unexplored edge $\{u, v\}$:
 - 1. If v is an unexplored node, v is matched to some neighbor w: add w to the tree (w is now explored)
 - 2. If v is explored and in the <u>same tree</u>: at <u>odd</u> distance from root \rightarrow ignore and move on at even distance from root \rightarrow blossom found
 - 3. If v is explored and in another tree at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow augmenting path found

Running Time

Finding a Blossom: Repeat on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time $O(mn^2)$.

augm. pths (marding improvements)
$$\leq \frac{u}{2}$$
| exploration: $O(u_1)$
explorations per augm. path: $\leq \frac{u}{2}$

Matching Algorithms

We have seen:

- O(mn) time alg. to compute a max. matching in bipartite graphs
- $O(mn^2)$ time alg. to compute a max. matching in general graphs

Better algorithms:

Best known running time (bipartite and general gr.): $O(m\sqrt{n})$

Weighted matching:

- Edges have weight, find a matching of maximum total weight
- Bipartite graphs: flow reduction works in the same way)
- General graphs: can also be solved in polynomial time
 (Edmond's algorithms is used as blackbox)