Chapter 7
Randomization

Algorithm Theory
WS 2015/16

Fabian Kuhn

UNI
I

FREIBURG

Randomization

Randomized Algorithm:

* An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster

* Make algorithms simpler

* Make the analysis simpler

— Sometimes it’s also the opposite...

* Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization
— True in some computational models (e.g., for distributed algorithms)
— Not clear in the standard sequential model

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
|

FREIBURG

Contention Resolution

UNI
|

FREIBURG

A simple starter example (from distributed computing)
* Allows to introduce important concepts
* ...and to repeat some basic probability theory

Setting: —-

\;--")
* 1N pProcesses, 1 resource

é‘{:ﬁm (e.g., shared database, communication channel, ...)

* There are time slots 1,2,3, ...

* In each time slot, only one client can access the resource
* All clients need to regularly access the resource
* Ifclienti tries to access the resource in slot t:

—— e

— Successful iff no other client tries to access the resource in slot t

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Algorithm

UNI
|

FREIBURG

Algorithm Ideas:
* Accessing the resource deterministically seems hard

— need to make sure that processes access the resource at different times
— or at least: often only a single process tries to access the resource

e Randomized solution:

In each time slot, each process tries with probability p.
— -

Analysis:
 How large should p be?
* How long does it take until some process i succeeds?

* How long does it take until all processes succeed?
* What are the probabilistic guarantees?

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Analysis T(A1320) = T F®- 7O
c£‘ g C \uCQ.o..‘P

UNI
FREIBURG

Events: W gwco.ssz.s

* A;;:process i tries to access the resource in time slot t

=

— Complementary event: A; ;

P(Aie) =p, P(Ayr)=1-p

—

* ;i process i is successful in time slot t —
_ o L At,tj A},+
it = At N (qu,t) (=)
- - e \\v\&n?.

* Success probability (for process i):

F(S.0- WAD - T TA,) = T O

y*e

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Fixing D Lo Q"' ‘\\7\)“;{ 9:\0((4— XTA) =e"

w0

UNI

FREIBURG

« P(S;;) =p(1 —p)*1is maximized for

1 1
p=n = P =

n n

e — ?

p—

1 n—1
1-— —) =
n

* Asymptotics:

1 1\%* 1 1
Forn = 2: ZS 1——) <—-<[1—-—

n

* Success probability:

! P(S <1
eng " Cit) <3y

Algorithm Theory, WS 2015/16 Fabian Kuhn

Time Until First Success =TS = <

d)
n‘\“"-’-l\,

UNI
|

FREIBURG

) .
Random Variable T;: hwe uakl |7 success o proc. &
 T; =tif proc.iissuccessful in slot t for the first time

e Distribution:

/E} =9, W(Eﬂ,) = (l-¢) q W(T}:-O = Lt—ed‘"g(J

e T;is geometrically distributed with parameter

1 1\""' 1
Z=P(5i,t)=ﬁ(1——> > —

n en’

* Expected time until first success:

1
E|T;] =—<en

q =

—d

Algorithm Theory, WS 2015/16 = Fabian Kuhn 7

Time Until First Success

UNI
|

FREIBURG

Failure Event T,t' Process i does not succeed in timeslots 1, ..., t

ﬂ S‘ur

* The events §; ; are independent for different ¢:
t)
_ t
P(F.) = P ﬂ Sir 1_[P(S;) = (1- [P(Slr))
r=1

9,

&‘fxe’\R RS e

—

L,t

* We know that IP’(SL-,T) > 1/,

¢
1 t
P(F;,)<|[1-—] <e en
(‘t) < en) ?e
+ —\/
(\—q_\ -\/e“ /

Algorithm Theory, WS 2015/16 Q

—

Fabian Kuhn 8

Time Until First Success

UNI
FREIBURG

No success by time t: P(Ti,t) < g~ /en

t = [en]: P(F;;) < Ve

* Generallyif t = ©(n): constant success probability

t>en-c-lnn: P(Tlt) < /Clnn—

_

* For success probability 1 —1/,c, we need t = ©(nlogn).

* We say that i succeeds W|th high probablllty in 0({1 logn) time.

nC

—C

uh\)m\o \—A-

V\

XKN QN'O"/‘ Co-'—'-%x\, <

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Time Until All Processes Succeed (%)

Event F;: some process has not succeeded by time t

A —R n —
(&) e T
t — tt

T(AUD) =P +(R) ~T(An¥) ~

s A +RE®)
Union Bound: For events &4, ..., &,
KU E | < 2 P(E;)

Probability that not all processes have succeeded by time t:

UNI
|

FREIBURG

n n
P(F,) =P (U Tl-,t) < 2 P(F;;) <n- e—Zen.
- i=1 i=1 —(—— /

_/m

<

Algorithm Theory, WS 2015/16 Fabian Kuhn

Time Until All Processes Succeed

UNI
FREIBURG

Claim: With high probability, all processes succeed in the first
O(nlogn) time slots.

Proof:
e P(F,) <n-et/en
« Sett =[en:(c+1)Inn] ct)
T e (k) Gan QQW,\> A
TE)< w e = =V\Q@- IRAEVCLIRVE

PT)> \ - =

Remark: @(nlogn) time slots are necessary for all processes to
succeed with reasonable probability

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

UNI

Primality Testing

FREIBURG

Problem: Given a natural numbern = 2, isn a prime number?

(Simple primality test:

1. ifniseven then
2 return (n = 2) a-b=n
3. fori:=1to|yn/2|do Stre o gt @(@9% “)
4, if 2i + 1 divides n then —
5. return false

| 6. return true W s)Q \M?.Ar

QX?.‘K
/

* Running time: 0(1/n)

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

A Better Algorithm?

UNI
FREIBURG

* How can we test primality efficiently?
 We need a little bit of basic number theory...

Square Roots of Unity: In Z;,, where p is a prime, the only
solutions of the equation x* = 1 (mod p) are x = £1 (mod p)

Z‘;g"“'/’?'a’ X*= | (wed p) Wley s
(xV)(x=D = 0 (wmek 3) <= (XN x-)=0C-7P

_tm He Ladd. kas
f'\-v‘:f. oxzwoJx ?)

ot ‘\‘WJLTQ P ™ wot o (o

 If we find an x £ +1 (mod n) such that x? = 1 (mod n), we
can conclude that 7 is not a prime.

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Algorithm ldea 2Z2,=7v-, ¢S o4

[

UNI
FREIBURG

\d [

Claim: Let p > 2 be a prime number such that p—1 1 = 2°d for an
integer s > 1 and some odd integer d > 3. Then for all a € 7y,
2'd —

—

a® =1 (modp) or a=? = —1 (mod p) forsome 0 <r <s.

é
Proof: tecll xX'=\(wd) <> xe¢ =1, +13 (e ?)

* Fermat’s Little Theo‘r%m: Given a prime number p,
Va € Z: aP~' =1 (mod p)

-\
".:-‘-)+| (wok @) —_—> Ei—:’{ v

2
A = -\
/-—-I (wed ¢) Lp- &)
,—,Fd — QA =
2
; &
Quan

Algorithm Theory, WS 2015/16 Fabian Kuhn 14

Primality Test

UNI
|

FREIBURG

We have: If n is an odd prime and n— 1 = 2°d for an integers > 1
and an odd integer d = 3. Thenforalla € {1, ...,n — 1},

() a® =1 (modn) or a?'d = —1 (mod n) forsome 0 <r <s.
- =

—_—

—

Idea: If we findana € {1, ...,n — 1} such that

m‘ a? 1 (modn) and a? % £ —1 (modn) forall0 <r <s,
—— —————
we can conclude that n is not a prime.

* For every odd composite n > 2, at least 3/4 of all possible a
satisfy the above condition

How can we find such a witness a efficiently?

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

Miller-Rabin Primality Test

UNI
|

FREIBURG

* Given a natural numbern = 2, isn a prime number?

Miller-Rabin Test:

if n is even then return (n = 2) Sodd A

(&2

compute s, d such thatn — 1 = 2°d;

choose g € {2, ...,n — 2} uniformly at random;

x = a® mod n;

2

3

4

5. ifx =1orx =n— 1 then return true;

6. forr:=1tos—1do 2" &2«»3))\ W
7

8

9

x = x* mod n;

\ \,\9
if x ==1 then return true; -5 9(\"" g
turn falst S T e
return false; @
C\/*& WS wok & (0\\7 \w“"‘
\& W \S A (

Algorithm Theory, WS 2015/16 Fabian Kuhn

16

Analysis

UNI
FREIBURG

Theorem:
* Ifnis prime, the Miller-Rabin test always returns true.

* If nis composite, the Miller-Rabin test returns false with
probability at least 3/,.

Proof:
* Ifnis prime, the test works for all values of a
* If nis composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to

detect a composite number n with probabilityaz:]t most 4.
—

Algorithm Theory, WS 2015/16 Fabian Kuhn 17

Running Time

UNI

FREIBURG

G, -, u=)

Cost of Modular Arithmetic:
* Representation of a number x € Z,: O(logn) bits

* Cost of adding two numbers x + y mod n:
O ey

* Cost of multiplying two numbers x - y mod n:

— It’s like multiplying degree O (logn) polynomials
—> use FFT to computez = x - y

Algorithm Theory, WS 2015/16 Fabian Kuhn

18

Running Time

UNI

FREIBURG

Cost of exponentiation x¢

mod n:

* Can be done using O(log d) multiplications
e

 Base-2 representationofd: d =) ;_ logd d; 2!
* Fast exponentiation:
1. y:=1;
2. fori:=|logd]|to0do oo
3 y = yz mod n; X .
4. ifd; = 1theny :=y-x modn;
5. returny; — x O oll
VL - (=)
e Example:d = 22 =10110,
2 ~\2 2 4 2)Z
— \xu7 = (X\.'X) = ((XS) X) = ((X "\) X
LKA X
= (LM x)
Algorithm Theory, WS 2015/16 Fabian Kuhn)

19

Running Time \ =& 0Ly~ &G L5540 “>J

o
[
=)
0
w

_E <
= T

R

Theorem: One iteration of the Miller-Rabin test can be implemented
with running time O(log? n - loglogn - logloglogn).

ifniseventhenreturn (n =2) s =04 “)
compute s, d such thatn — 1 = 25d; &= 0()
choose a € {2, ...,n — 2} uniformly at random;

x = amodn; Olsyw) wdhpl.

if x =1orx =n — 1then return true;
forr:=1tos — 1do <—8llqu) wp.
;:z x?modn; =— | mut
if x = 1 then return true;

L 0 N O Uk WDNR

return false;

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

BURG

Deterministic Primality Test (@)

zl.l.l
o5&

* If a conjecture called the generalized Riemann hypothesis (GRH)
is true, the Miller-Rabin test can be turned into a polynomial-
time, deterministic algorithm

- Itis then sufficient to try all a € {1, ..., 0(log® n)}

* It has long not been proven whether a deterministic,
polynomial-time algorithm exists

* In 2002, Agrawal, Kayal, and Saxena gave an %D(log12 n)-time
deterministic algorithm

— Has been improved to 0(log® n)

* In practice, the randomized Miller-Rabin test is still the fastest
algorithm o

Algorithm Theory, WS 2015/16 Fabian Kuhn 21

