

Chapter 7 Randomization

Algorithm Theory WS 2015/16

Fabian Kuhn

Randomization

Randomized Algorithm:

 An algorithm that uses (or can use) random coin flips in order to make decisions

We will see: randomization can be a powerful tool to

- Make algorithms faster
- Make algorithms simpler
- Make the analysis simpler
 - Sometimes it's also the opposite...
- Allow to solve problems (efficiently) that cannot be solved (efficiently) without randomization
 - True in some computational models (e.g., for distributed algorithms)
 - Not clear in the standard sequential model

Contention Resolution

A simple starter example (from distributed computing)

- Allows to introduce important concepts
- ... and to repeat some basic probability theory

Setting:

- n processes, 1 resource against (e.g., shared database, communication channel, ...)
- There are time slots 1,2,3, ...
- In each time slot, only one client can access the resource
- All clients need to regularly access the resource
- If client i tries to access the resource in slot t:
 - Successful iff no other client tries to access the resource in slot t

Algorithm

Algorithm Ideas:

- Accessing the resource deterministically seems hard
 - need to make sure that processes access the resource at different times
 - or at least: often only a single process tries to access the resource
- Randomized solution:

In each time slot, each process tries with probability p.

Analysis:

- How large should p be?
- How long does it take until some process i succeeds?
- How long does it take until all processes succeed?
- What are the probabilistic guarantees?

Analysis

P(ABAC) = P(A).P(B).P(C) if I,B,C, inclep.

Events:

- $\mathcal{A}_{i,t}$: process <u>i</u> tries to access the resource in time slot t
 - Complementary event: $A_{i,t}$

$$\mathbb{P}(\mathcal{A}_{i,t}) = p, \qquad \mathbb{P}(\overline{\mathcal{A}_{i,t}}) = 1 - p$$

• $S_{i,t}$: process i is successful in time slot t

$$S_{i,t} = A_{i,t} \cap \left(\bigcap_{j \neq i} \overline{A_{j,t}}\right) \qquad A_{i,t} A_{j,t}$$

$$A_{i,t} A_{j,t}$$

$$A_{i,t} A_{j,t}$$

$$A_{i,t} A_{j,t}$$

$$A_{i,t} A_{j,t}$$

$$A_{i,t} A_{j,t}$$

Success probability (for process i):

$$\mathbb{P}(S_{i,t}) = \mathbb{P}(A_{i,t}) \cdot \mathbb{T} \mathbb{P}(\overline{A_{i,t}}) = \mathbb{P}(1-\mathbb{P})^{n-1}$$

Fixing
$$p$$
 ${\mathfrak g}$

$$\left(1+\frac{1}{N}\right)^{N}=e^{-\frac{N}{N}}$$

Fixing
$$p$$
 $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$ $\lim_{n\to\infty} (1+\frac{x}{n})^n = e^x$

• $\mathbb{P}(S_{i,t}) = p(1-p)^{n-1}$ is maximized for

$$\frac{p = \frac{1}{n}}{n} \implies \mathbb{P}(S_{i,t}) = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} \cdot \approx \frac{1}{e_n}$$

Asymptotics:

For
$$n \ge 2$$
: $\frac{1}{4} \le \left(1 - \frac{1}{n}\right)^n < \frac{1}{e} < \left(1 - \frac{1}{n}\right)^{\frac{n-1}{2}} \le \frac{1}{2}$

Success probability:

$$\frac{1}{en} \leq \mathbb{P}(S_{i,t}) \leq \frac{1}{2n}$$

1st success of proc. i Random Variable T_i : the until

- $T_i = t$ if proc. i is successful in slot t for the first time
- **Distribution:**

$$P(T_{i}=1)=q$$
, $P(T_{i}=2)=(1-q)q$, $P(T_{i}=t)=(1-q)^{t-1}q$

• T_i is geometrically distributed with parameter

$$\underline{q} = \mathbb{P}(S_{i,t}) = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} > \frac{1}{en}.$$

Expected time until first success:

$$\mathbb{E}[T_i] = \frac{1}{q} < \underbrace{en}_{\text{Eabjan Kuhn}}$$

Time Until First Success

Failure Event $\underline{\mathcal{F}_{i,t}}$: Process i does not succeed in time slots $1, \dots, t$

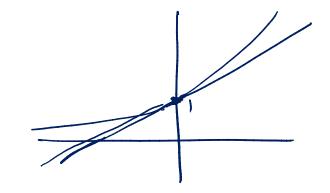
• The events $S_{i,t}$ are independent for different t:

$$\underline{\mathbb{P}(\mathcal{F}_{i,t})} = \mathbb{P}\left(\bigcap_{r=1}^{t} \overline{\mathcal{S}_{i,r}}\right) = \prod_{r=1}^{t} \mathbb{P}(\overline{\mathcal{S}_{i,r}}) = \left(1 - \underline{\mathbb{P}(\mathcal{S}_{i,r})}\right)^{t}$$

• We know that $\mathbb{P}(S_{i,r}) > 1/e_n$:

$$\mathbb{P}(\mathcal{F}_{i,t}) < \left(1 - \frac{1}{en}\right)^t < e^{-t/en}$$

$$= e^{-t/en}$$



YxeR: 1+x < ex

Time Until First Success

No success by time $t: \mathbb{P}(\mathcal{F}_{i,t}) < e^{-t/en}$

$$t = [en]: \mathbb{P}(\mathcal{F}_{i,t}) < 1/e$$

• Generally if $\underline{t} = \Theta(n)$: constant success probability

$$t \geq \underline{en \cdot c \cdot \ln n}$$
: $\mathbb{P}(\mathcal{F}_{i,t}) < \frac{1}{e^{c \cdot \ln n}} = \frac{1}{n^c}$

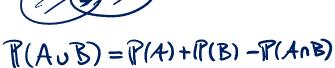
- For success probability $1 \frac{1}{n^c}$, we need $t = \Theta(n \log n)$.
- We say that i succeeds with high probability in $O(n \log n)$ time.

with prob.
$$1 - \frac{1}{N^c}$$
 for every coust. c

Time Until All Processes Succeed P(Fe)

Event \mathcal{F}_t : some process has not succeeded by time t

$$\underline{\underline{\mathcal{F}_t}} = \bigcup_{i=1}^n \underline{\mathcal{F}_{i,i}}$$



$$\leq \mathbb{R}(A) + \mathbb{R}(B)$$

Union Bound: For events $\mathcal{E}_1, \dots, \mathcal{E}_k$,

$$\mathbb{P}\left(\bigcup_{i}^{k} \mathcal{E}_{i}\right) \leq \sum_{i}^{k} \mathbb{P}(\mathcal{E}_{i})$$

Probability that not all processes have succeeded by time t:

$$\mathbb{P}(\mathcal{F}_t) = \mathbb{P}\left(\bigcup_{i=1}^n \mathcal{F}_{i,t}\right) \leq \sum_{i=1}^n \mathbb{P}(\mathcal{F}_{i,t}) < \underbrace{n \cdot e^{-t/en}}.$$

Time Until All Processes Succeed

Claim: With high probability, all processes succeed in the first $O(n \log n)$ time slots.

Proof:

•
$$\mathbb{P}(\mathcal{F}_t) < n \cdot e^{-t/en}$$

• Set
$$t = [en \cdot (c+1) \ln n]$$

$$P(\overline{J_{+}}) < n e^{\frac{en(c+1)enn}{en}} = n (e^{-\ln n}) = n \cdot \frac{1}{n^{c+1}} = \frac{1}{n^{c}}$$

$$P(\overline{J_{+}}) > 1 - \frac{1}{n^{c}}$$

Remark: $\Theta(n \log n)$ time slots are necessary for all processes to succeed with reasonable probability

Primality Testing

Problem: Given a natural number $n \ge 2$, is n a prime number?

Simple primality test:

- 1. **if** n is even **then**
- 2. return (n = 2)

$$a \cdot b = n$$

- 3. for $i \coloneqq 1$ to $\left\lfloor \sqrt{n}/2 \right\rfloor$ do
- 4. **if** 2i + 1 divides n **then**
- 5. **return false**
- 6. return true

exp. in the side of input

• Running time: $O(\sqrt{n})$

A Better Algorithm?

- How can we test primality efficiently?
- We need a little bit of basic number theory...

Square Roots of Unity: In \mathbb{Z}_p^* , where p is a prime, the only solutions of the equation $x^2 \equiv 1 \pmod{p}$ are $x \equiv \pm 1 \pmod{p}$

$$Z^{2} = [1, \dots, p-1]$$

$$X^{2} = 1 \pmod{p}$$

$$X^{2} - 1 = 0 \pmod{p}$$

$$(x+1)(x-1) = 0 \pmod{p} \iff (x+1)(x-1) = C \cdot p$$

$$\text{Powe of the fact. has}$$
to be 0 (mod p)
$$\text{to be 0 (mod p)}$$

• If we find an $x \not\equiv \pm 1 \pmod{n}$ such that $x^2 \equiv 1 \pmod{n}$, we can conclude that n is not a prime.

Claim: Let p > 2 be a prime number such that $p - 1 = 2^{s}d$ for an integer $s \ge 1$ and some odd integer $d \ge 3$. Then for all $a \in \mathbb{Z}_p^*$,

$$\underline{a^d \equiv 1 \pmod{p}}$$
 or $\underline{\underline{a^{2^r d} \equiv -1}} \pmod{p}$ for some $0 \le r < \underline{s}$.

Proof: recall
$$x^2 \equiv 1 \pmod{p} \iff x \in \{-1, +1\} \pmod{p}$$

Fermat's Little Theorem: Given a prime number p,

$$\forall a \in \mathbb{Z}_p^*: \underline{a^{p-1}} \equiv \underline{1} \pmod{p}$$

$$a = \begin{cases} -1 & \text{(wod } p) \end{cases}$$

$$a = \begin{cases} -1 & \text{(wod } p) \end{cases}$$

$$a = \begin{cases} -1 & \text{(wod } p) \end{cases}$$

$$a = \begin{cases} -1 & \text{(wod } p) \end{cases}$$

$$a = \begin{cases} -1 & \text{(wod } p) \end{cases}$$

$$a = \begin{cases} -1 & \text{(wod } p) \end{cases}$$

$$a = \begin{cases} -1 & \text{(wod } p) \end{cases}$$

$$a = \begin{cases} -1 & \text{(wod } p) \end{cases}$$

Primality Test

We have: If n is an odd prime and $n-1=2^sd$ for an integer $s\geq 1$ and an odd integer $d\geq 3$. Then for all $a\in\{1,\ldots,n-1\}$,

 $\underline{a^d} \equiv 1 \pmod{n}$ or $a^{2^r d} \equiv -1 \pmod{n}$ for some $\underline{0} \le r < s$.

Idea: If we find an $a \in \{1, ..., n-1\}$ such that

 $\underline{a^d} \not\equiv 1 \pmod{n}$ and $\underline{a^{2^r d}} \not\equiv -1 \pmod{n}$ for all $0 \leq r < s$, we can conclude that n is not a prime.

- For every odd composite n > 2, at least $\frac{3}{4}$ of all possible a satisfy the above condition
- How can we find such a witness a efficiently?

Miller-Rabin Primality Test

• Given a natural number $n \ge 2$, is n a prime number?

Miller-Rabin Test:

- if n is even then return (n=2)
- compute s, d such that $n-1=2^s d$;
- choose $\underline{a} \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x = a^d \mod n$:
- 5. if x = 1 or x = n 1 then return true;
- 6. for r := 1 to s 1 do
- 7. $x \coloneqq \underline{x}^2 \mod n$;
- if x = 1 then return true;
- return false; 9.

x = -1 then return true;false; x = -1 then return true; $x = -1 \text{ then return$

Analysis

Theorem:

- If n is prime, the Miller-Rabin test always returns **true**.
- If n is composite, the Miller-Rabin test returns **false** with probability at least $\frac{3}{4}$.

Proof:

- If n is prime, the test works for all values of a
- If n is composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to detect a composite number n with probability at most 4^{-k} .

Running Time

Cost of Modular Arithmetic:

- 0, --, 4-1
- Representation of a number $x \in \mathbb{Z}_n$: $O(\log n)$ bits
- Cost of adding two numbers $x + y \mod n$:

- Cost of multiplying two numbers $x \cdot y \mod n$:
 - It's like multiplying degree $O(\log n)$ polynomials \rightarrow use <u>FFT</u> to compute $z = x \cdot y$

O(logn loglyn loglylogn)

Running Time

Cost of exponentiation $x^d \mod n$:

- Can be done using $O(\log d)$ multiplications
- Base-2 representation of d: $d = \sum_{i=0}^{\lfloor \log d \rfloor} d_i 2^i$
- Fast exponentiation:
 - 1. y := 1;
 - 2. for $i := \lfloor \log d \rfloor$ to 0 do
 - 3. $y = y^2 \mod n$;
 - 4. **if** $d_i = 1$ **then** $y := y \cdot x \mod n$;
- Example: $d = 22 = 10110_2$

$$x^{22} = (x^{11})^{2} = (x^{10} \cdot x)^{2} = ((x^{5})^{2} x)^{2} = ((x^{2})^{2} \cdot x)^{2}$$

$$= (((x^{2})^{2} \cdot x)^{2} x)^{2}$$

X 1010 - X

Theorem: One iteration of the Miller-Rabin test can be implemented with running time $O(\log^2 n \cdot \log \log n \cdot \log \log \log n)$.

- 1. if n is even then return (n = 2) $s = O(\log n)$
- compute s, d such that $n 1 = 2^s d$; d = O(n)
- choose $a \in \{2, ..., n-2\}$ uniformly at random;
- $x \coloneqq a^d \mod n$; $o(\log n)$ multiple.
- if x = 1 or x = n 1 then return true;
- for r := 1 to s 1 do $\blacktriangleleft \text{light}$) represents
- $x \coloneqq x^2 \mod n$; \blacktriangleleft | mult. 7.
- if x = 1 then return true; 8.
- return false; 9.

Deterministic Primality Test

- If a conjecture called the generalized Riemann hypothesis (GRH) is true, the Miller-Rabin test can be turned into a polynomialtime, deterministic algorithm
 - \rightarrow It is then sufficient to try all $a \in \{1, ..., O(\log^2 n)\}$
- It has long not been proven whether a deterministic, polynomial-time algorithm exists
- In 2002, Agrawal, Kayal, and Saxena gave an $\widetilde{\mathcal{O}}(\log^{12} n)$ -time deterministic algorithm
 - Has been improved to $\tilde{O}(\log^6 n)$
- In practice, the randomized Miller-Rabin test is still the fastest algorithm