

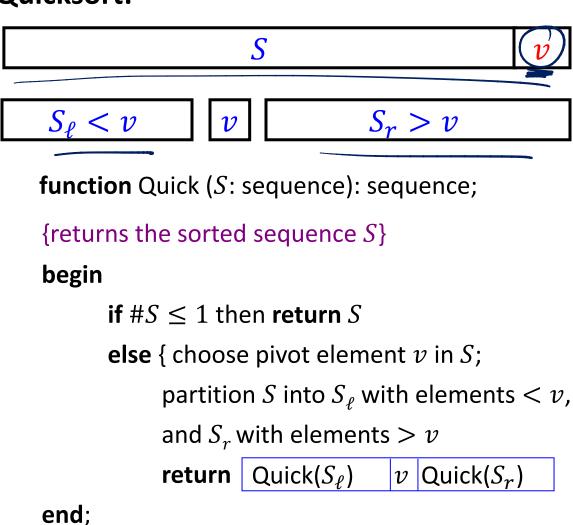
Chapter 7 Randomization

Algorithm Theory WS 2015/16

Fabian Kuhn

Randomized Quicksort

Quicksort:



worst case cost of QS: O(u2)

Randomized Quicksort: pick uniform random element as pivot

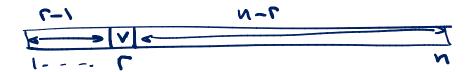
Running Time of sorting n elements:

- Let's just count the <u>number of comparisons</u>
- In the partitioning step, all n-1 non-pivot elements have to be compared to the pivot
- Number of comparisons:

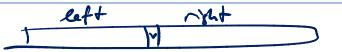
n-1 + #comparisons in recursive calls

If rank of pivot is r:

recursive calls with r-1 and n-r elements



Random variables:



- \underline{C} : total number of comparisons (for a given array of length n)

• \underline{R} : rank of first pivot $C = n - 1 + C_r + C_r$ • $\underline{C_\ell}$, $\underline{C_r}$: number of comparisons for the 2 recursive calls ℓ_{n} .

$$\mathbb{E}[C] = n - 1 + \mathbb{E}[C_{\ell}] + \mathbb{E}[C_r]$$

Law of Total Expectation:

$$\mathbb{E}[C] = \sum_{r=1}^{n} \mathbb{P}(R=r) \cdot \mathbb{E}[C|R=r]$$

$$= \sum_{r=1}^{n} \mathbb{P}(R=r) \cdot (n-1) + \mathbb{E}[C_{\ell}|R=r] + \mathbb{E}[C_{r}|R=r]$$

$$= \sum_{r=1}^{n} \mathbb{P}(R=r) \cdot (n-1) + \mathbb{E}[C_{\ell}|R=r] + \mathbb{E}[C_{r}|R=r]$$

We have seen that:

$$\mathbb{E}[C] = \sum_{r=1}^{n} \mathbb{P}(R = r) \cdot (n - 1 + \mathbb{E}[C_{\ell}|R = r] + \mathbb{E}[C_{r}|R = r])$$

$$\mathbb{E}[C] = \sum_{r=1}^{n} \mathbb{P}(R = r) \cdot (n - 1 + \mathbb{E}[C_{\ell}|R = r] + \mathbb{E}[C_{r}|R = r])$$

$$\mathbb{E}[C] = \sum_{r=1}^{n} \mathbb{P}(R = r) \cdot (n - 1 + \mathbb{E}[C_{\ell}|R = r] + \mathbb{E}[C_{r}|R = r])$$

$$\mathbb{E}[C] = \sum_{r=1}^{n} \mathbb{P}(R = r) \cdot (n - 1 + \mathbb{E}[C_{\ell}|R = r] + \mathbb{E}[C_{r}|R = r])$$

Define:

• T(n): expected number of comparisons when sorting n elements

$$\mathbb{E}[C] = T(n)$$

$$\mathbb{E}[C_{\ell}|R = r] = T(r - 1)$$

$$\mathbb{E}[C_r|R = r] = T(n - r)$$

Recursion:

$$T(n) = \sum_{r=1}^{n} \frac{1}{n} \cdot (n-1+T(r-1)+T(n-r))$$

$$T(0) = T(1) = 0$$

Theorem: The expected number of comparisons when sorting nelements using randomized quicksort is $T(n) \leq 2n \ln n$.

Proof:

Proof:

$$T(n) = \sum_{r=1}^{n} \frac{1}{n} \cdot (n-1+T(r-1)+T(n-r)), \quad T(0) = 0$$
 $= N-1 + \frac{1}{N} \cdot \sum_{i=0}^{n-1} (T(i)+T(n-i-1))$
 $= N-1 + \frac{2}{N} \cdot \sum_{i=0}^{n-1} T(i)$
 $\leq N-1 + \frac{4}{N} \cdot \sum_{i=0}^{n-1} T(i)$

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

Proof:

$$T(n) \leq n - 1 + \frac{4}{n} \cdot \int_{1}^{n} x \ln x \, dx$$

$$T(n) \leq n - 1 + \frac{4}{n} \left(\frac{n^{2} \ln n}{2} - \frac{n^{2}}{4} + \frac{1}{4} \right)$$

$$= n - 1 + 2n \ln(n) - n + \frac{1}{n}$$

$$= 2n \ln(n) + \frac{1}{n} - 1 < 2n \ln(n)$$

$$= 2n \ln(n) + \frac{1}{n} - 1 < 2n \ln(n)$$

$$= 2n \ln(n) + \frac{1}{n} - 1 < 2n \ln(n)$$

$$= 2n \ln(n) + \frac{1}{n} - 1 < 2n \ln(n)$$

$$= 2n \ln(n) + \frac{1}{n} - 1 < 2n \ln(n)$$

$$= 2n \ln(n) + \frac{1}{n} - 1 < 2n \ln(n)$$

$$= 2n \ln(n) + \frac{1}{n} - 1 < 2n \ln(n)$$

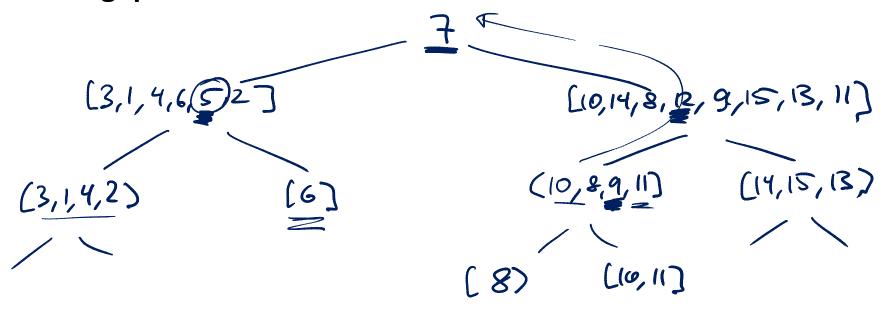
$$= 2n \ln(n) + \frac{1}{n} - 1 < 2n \ln(n)$$

$$= -\frac{1}{n^{2}}$$

Alternative Analysis

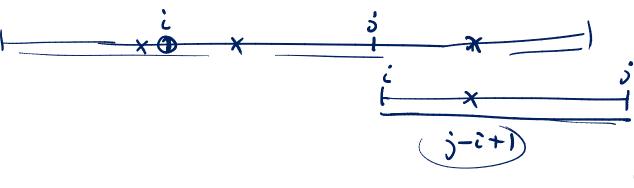
Array to sort: (7), 3, 1, 10, 14, 8, 12, 9, 4, 6, 5, 15, 2, 13, 11]

Viewing quicksort run as a tree:



Comparisons

- Comparisons are only between pivot and non-pivot elements
- Every element can only be the pivot once:
 - → every 2 elements can only be compared once!
- W.l.o.g., assume that the elements to sort are 1,2,...,n
- Elements i and j are compared if and only if either i or j is a pivot before any element h: i < h < j is chosen as pivot
 - i.e., iff i is an ancestor of j or j is an ancestor of i



$$\mathbb{P}(\text{comparison betw. } i \text{ and } j) = \frac{2}{j-i+1}$$

Counting Comparisons

Random variable for every pair of elements (i, j):

$$X_{ij} = \begin{cases} 1, & \text{if there is a comparison between } i \text{ and } j \\ \hline 0, & \text{otherwise} \end{cases}$$

$$P(X_{ij}=1) = \frac{2}{j-i+1}$$
 $E(X_{ij}) = \frac{2}{j-i+1}$

Number of comparisons: X

$$X = \sum_{i < j} X_{ij}$$

• What is $\mathbb{E}[X]$?

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

Proof:

Linearity of expectation:

For all random variables $X_1, ..., X_n$ and all $a_1, ..., a_n \in \mathbb{R}$,

$$\mathbb{E}\left[\sum_{i}^{n} a_{i} X_{i}\right] = \sum_{i}^{n} a_{i} \mathbb{E}[X_{i}].$$

$$X = \underset{i < j}{\leq} X_{ij}$$

$$E[X] = E[X_{ij}]$$

$$= X_i E[X_{ij}]$$

$$= X_i = X$$

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

Proof:

$$\mathbb{E}[X] = 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} = 2\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{1}{k}$$

Harmonic series
$$H(u) = \underbrace{\sum_{i=1}^{n} \frac{1}{i}}_{H(u)}$$

$$H(u) \leq 1 + \ln(u)$$

$$\leq 2 \leq \frac{1}{k}$$

$$= 2 \leq (+(n) - 1)$$

$$= 2 \cdot n (+(n) - 1)$$

$$\leq 2 \cdot n (-1)$$