Chapter 7
Randomization

Algorithm Theory
WS 2015/16

Fabian Kuhn

UNI
I

FREIBURG

UNI

Types of Randomized Algorithms

FREIBURG

Las Vegas Algorithm:

* always a correct solution

* running time is a random variable

 Example: randomized quicksort, contention resolution
Monte Carlo Algorithm:

e probabilistic correctness guarantee (mostly correct)

* fixed (deterministic) running time

 Example: primality test

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Minimum Cut

UNI
|

FREIBURG

Reminder: Given a graph ¢ = (V,E), a cut is a partition (4, B)
of VsuchthatV = AUB,ANB=Q9,A,B+0

Size of the cut (A, B): # of edges crossing the cut
* For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size A(G))

Maximum-flow based algorithm:
* Fix s, compute min s-t-cutforallt # s

» 0(m- A(G)) = O(mn) per s-t cut
e Gives an O(mn/l(G)) = 0(mn?)-algorithm

Best-known deterministic algorithm: O (mn + n? logn)

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

UNI
|

FREIBURG

Edge Contractions

* In the following, we consider multi-graphs that can have
multiple edges (but no self-loops)

ok not ok

Contracting edge {u, v}:

 Replace nodes u, v by new node w
* Forall edges {u,x} and {v, x}, add an edge {w, x}
 Remove self-loops created at node w

contract {u, v}

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

UNI
|

FREIBURG

Properties of Edge Contractions

Nodes:
* After contracting {u, v}, the new node represents u and v

e After a series of contractions, each node represents a subset of
the original nodes

2 (1,2) (1,2)
3 {5,(4,6)} 3 {3,(4,5,6)}
= (3,4,5,6)
6 (4,5,6)
Cuts:

* Assume in the contracted graph, w represents nodes S, C V

* The edges of a node w in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut (S,,, V \ S,,)

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Randomized Contraction Algorithm

UNI
FREIBURG

Algorithm:

while there are > 2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0(n?).

e We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 0(n?).
* There are n — 2 contractions, each can be done in time O(n).

* You will show this later.
Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Contractions and Cuts

UNI
|

FREIBURG

Lemma: If two original nodes u, v € V are merged into the same
node of the contracted graph, there is a path connecting u and v
in the original graph s.t. all edges on the path are contracted.

Proof:

* Contracting an edge {x, y} merges the node sets represented by
x and y and does not change any of the other node sets.

* The claim the follows by induction on the number of edge
contractions.

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Contractions and Cuts

UNI
|

FREIBURG

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

e All cuts in a (partially) contracted graph correspond to cuts of
the same size in the original graph G as follows:

— For a node u of the contracted graph, let S,, be the set of original nodes
that have been merged into u (the nodes that u represents)

— Consider a cut (4, B) of the contracted graph

— (4',B") with
A= US“’ B’ = US”

UEA VEB
is a cut of G.

— The edges crossing cut (4, B) are in one-to-one correspondence with the
edges crossing cut (4, B).

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Contraction and Cuts

UNI
|

FREIBURG

Lemma: The contraction algorithm outputs a cut (4, B) of the input
graph G if and only if it never contracts an edge crossing (4, B).

Proof:

1. If an edge crossing (A4, B) is contracted, a pair of nodes u € A4,
v € V is merged into the same node and the algorithm outputs
a cut different from (4, B).

2. If noedge of (4, B) is contracted, notwonodesu € A, v € B
end up in the same contracted node because every path
connecting u and v in G contains some edge crossing (4, B)

In the end there are only 2 sets = outputis (4, B)

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Getting The Min Cut

UNI
|

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k,
G has at least kn/2 edges.

Proof:

* Min cut has size k = all nodes have degree = k
— A node v of degree < k gives a cut ({v},V \ {v}) of size < k

* Number of edgesm =1/, - > deg(v)

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

UNI

Getting The Min Cut

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:
* Consider a fixed min cut (4, B), assume (4, B) has size k

* The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

 Before contraction i, therearen + 1 — i nodes
2> andthus> (n+ 1 —i)k/2 edges

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i is at most

k 2
n+1-Dk n+1-1i"
2

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Getting The Min Cut

UNI
|

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i isat most 2/, ;_;.

* Event &;: edge contracted in step i is not crossing (4, B)

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

UNI

Getting The Min Cut

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:
* P(Eal&a N NE) =2/
* No edge crossing (4, B) contracted: event £ = NI &;

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Randomized Min Cut Algorithm

UNI
FREIBURG

Theorem: If the contraction algorithm is repeated 0(n®logn)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.

Proof:

* Probability to not get a minimum cut in ¢ - (2) - In n iterations:

1 C.(Z).lnn —clnn 1
() e
2

Corollary: The contraction algorithm allows to compute a minimum
cutin O(n*logn) time w.h.p.

* It remains to show that each instance can be implemented in
0(n?) time.

Algorithm Theory, WS 2015/16 Fabian Kuhn 14

Implementing Edge Contractions

Edge Contraction:
* Given: multigraph with n nodes

— assume that set of nodes is {1, ..., n}
e Goal: contract edge {u, v}
Data Structure
* We can use either adjacency lists or an adjacency matrix
* Entryinrow i and column j: #edges between nodes i and j
 Example:

C—3
K

.

|l

o
O REFR ON
—_ OO0 Rk O
WOO R R

=

Algorithm Theory, WS 2015/16 Fabian Kuhn

|
FRE:BURG

UNI

Contracting An Edge

UNI
|

FREIBURG

Example: Contract one of the edges between 3 and 5

Algorithm Theory, WS 2015/16

1 2 3 4 5 6 7
1101103 |0]0]0
211101101 2]|0
31011010220
4131070011010
51]0(112|1]0(1)|1
61012120101
/1010|0101 |1]|O0

13,5}

Fabian Kuhn

16

Contracting An Edge

UNI
|

FREIBURG

Example: Contract one of the edges between 3 and 5

G—y 1
2
@l N

35 3
4
5
&) 6

7
7
{3,5}

Algorithm Theory, WS 2015/16 Fabian Kuhn

1 2 3 4 5 6 7
O(1,0|3[]0(0]0
17010120
01002210
310/{0(0(1]0]6O0
O(1(2(1]0]1]1
0220|101
O(0|]O0|0]1|1]0

17

Contracting An Edge

UNI
|

FREIBURG

Example: Contract one of the edges between 3 and 5

T—y
@ ™
35

Algorithm Theory, WS 2015/16

1 2 35 4 6 7
1101103 00
21110]2]0 2|0
350120 |1 311
41310710 00
6101230 0|1
/1010110 110

{35/ 10 1

Fabian Kuhn

18

Contracting an Edge

UNI
|

FREIBURG

Claim: Given the adjacency matrix of an n-node multigraph and
an edge {u, v}, one can contract the edge {u, v} in time O (n).

* Row/column of combined node {u, v} is sum of rows/columns
of uand v

* Row/column of u can be replaced by new row/column of
combined node {u, v}

e Swap row/column of v with last row/column in order to have
the new (n — 1)-node multigraph as a contiguous
(n—1) X (n — 1) submatrix

Algorithm Theory, WS 2015/16 Fabian Kuhn 19

UNI

Finding a Random Edge

* We need to contract a uniformly random edge

* How to find a uniformly random edge in a multigraph?

— Finding a random non-zero entry (with the right probability) in an
adjacency matrix costs 0(n?).

Idea for more efficient algorithm:

* First choose a random node u
— with probability proportional to the degree (#edges) of u

* Pickarandom edge of u
— only need to look at one row = time 0(n)

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

FREIBURG

Choose a Random Node

UNI

FREIBURG

Edge Sampling:
1. Choose a node u € V with probability
deg(u) _ deg(u)
ZUEV deg(v) - 2m
2. Choose a uniformly random edge of u

Algorithm Theory, WS 2015/16 Fabian Kuhn

21

Choose a Random Node

UNI
|

FREIBURG

deg(u)
2m

* We need to choose a random node u with probability

* Keep track of the number of edges m and maintain an array with
the degrees of all the nodes

— Can be done with essentially no extra cost when doing edge contractions

Choose a random node:
degsum = 0;
for all nodes ue€elvlV:

deg(u)
2m—degsum

with probability

pick node u; terminate

else
degsum += deg(u)

Algorithm Theory, WS 2015/16 Fabian Kuhn 22

Randomized Min Cut Algorithm

UNI
|

FREIBURG

Theorem: If the contraction algorithm is repeated 0(n®logn)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

* One instance consists of n — 2 edge contractions

* Each edge contraction can be carried out in time 0 (n)
— Actually: O(current #nodes)

» Time per instance of the contraction algorithm: 0(n?)

Algorithm Theory, WS 2015/16 Fabian Kuhn 23

Can We Do Better?

UNI

« Time O(n*logn) is not very spectacular, a simple max flow
based implementation has time 0(n*%).

However, we will see that the contraction algorithm is
nevertheless very interesting because:

1. The algorithm can be improved to beat every known
deterministic algorithm.

1. It allows to obtain strong statements about the distribution
of cuts in graphs.

Algorithm Theory, WS 2015/16 Fabian Kuhn 24

FREIBURG

Better Randomized Algorithm

Recall:

Consider a fixed min cut (4, B), assume (A, B) has size k

The algorithm outputs (A4, B) iff none of the k edges crossing
(A, B) gets contracted.

Throughout the algorithm, the edge connectivity is at least k
and therefore each node has degree > k

Before contraction i, there are n + 1 — i nodes and thus at
least(n + 1 — i)k /2 edges

If no edge crossing (A4, B) is contracted before, the probability
to contract an edge crossing (A4, B) in step i is at most

k 2
n+1-Dk n+1-1i
2

Algorithm Theory, WS 2015/16 Fabian Kuhn 25

UNI
|

FREIBURG

UNI

Improving the Contraction Algorithm

FREIBURG

* For a specific min cut (4, B), if (4, B) survives the first i
contractions,

P(edge crossing (4, B) in contractioni + 1) <

n—i
* Observation: The probability only gets large for large i

* l|ldea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early
ones.

Algorithm Theory, WS 2015/16 Fabian Kuhn 26

Safe Contraction Phase

UNI
|

FREIBURG

Lemma: A given min cut (4, B) of an n-node graph G survives the
firstn — ["/\/E + 1} contractions, with probability > 1/,,.

Proof:
* Event &;: cut (4, B) survives contraction {
* Probability that (4, B) survives the first n — t contractions:

Algorithm Theory, WS 2015/16 Fabian Kuhn 27

UNI

Better Randomized Algorithm

FREIBURG

Let’s simplify a bit:

* Pretend that n/\/i is an integer (for all n we will need it).

* Assume that a given min cut survives the first n — "/\/E
contractions with probability > 1/,,.

contract(G, t):

e Starting with n-node graph G, perform n — t edge contractions
such that the new graph has t nodes.

mincut(G):
1. X; = mincut (Contract(G,n/ﬁ));

2. X, := mincut (contract(G,n/\/i));

3. return min{X, X,};
Algorithm Theory, WS 2015/16 Fabian Kuhn 28

UNI

Success Probability

FREIBURG

mincut(G):

1. X; := mincut (Contract(G,n/\/i));

2. X, := mincut (contract(G,n/\/?));

3. return min{X{, X5};

P(n): probability that the above algorithm returns a min cut when
applied to a graph with n nodes.

* Probability that X; is a min cut =

Recursion:

Algorithm Theory, WS 2015/16 Fabian Kuhn 29

Success Probability

UNI
FREIBURG

Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least 1/log, n.

Proof (by induction on n):

n 1 n\’

Algorithm Theory, WS 2015/16 Fabian Kuhn 30

Running Time

UNI
|

FREIBURG

1. X; = mincut (Contract(G,n/\/i));

2. X, = mincut (contract(G,n/\/E));

3. return min{Xy, X,};

Recursion:

e T(n):time to apply algorithm to n-node graphs

e Recursive calls: 2T ("/\/5)

* Number of contractions to get to "‘/\/E nodes: O(n)

T(n) = 2T< e

Algorithm Theory, WS 2015/16

V2

) +0n?), T@)=0()

Fabian Kuhn

31

