Chapter 7
 Randomization

Algorithm Theory WS 2015/16

Fabian Kuhn

Types of Randomized Algorithms

Las Vegas Algorithm:

- always a correct solution
- running time is a random variable
2ulnn
- Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

- probabilistic correctness guarantee (mostly correct)
- fixed (deterministic) running time
- Example: primality test

Minimum Cut

Reminder: Given a graph $G=(V, E)$, a cut is a partition (A, B) of V such that $V=A \cup B, A \cap B=\emptyset, A, B \neq \emptyset$

Size of the cut $(\boldsymbol{A}, \boldsymbol{B})$: \# of edges crossing the cut

- For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (ie., of size $\lambda(G)$)
Maximum-flow based algorithm:

- Fix s, compute min s-t-cut for all $t \neq s$

- $O(m \cdot \lambda(G))=O(\underline{m n})$ per s - t cut
- Gives an $\mathrm{O}(m n \lambda(G))=O\left(m n^{2}\right)$-algorithm

Best-known deterministic algorithm: $O\left(m n+n^{2} \log n\right)$

Edge Contractions

- In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

- For all edges $\{\underline{u}, \underline{x}\}$ and $\{v, x\}$, add an edge $\{\underline{w}, x\}$
- Remove self-loops created at node w

Properties of Edge Contractions

Nodes:

- After contracting $\{u, v\}$, the new node represents u and v
- After a series of contractions, each node represents a subset of the original nodes

Cuts:

- Assume in the contracted graph, \underline{w} represents nodes $S_{w} \subset V$
- The edges of a node w in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $\left(S_{w}, V \backslash S_{w}\right)$

Randomized Contraction Algorithm

Algorithm:

while there are >2 nodes do
contract a uniformly random edge return cut induced by the last two remaining nodes (cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum cut with probability at least $1 / O\left(n^{2}\right)$.

- We will show this next.

Theorem: The random contraction algorithm can be implemented in time $O\left(n^{2}\right)$.

- There are $n-2$ contractions, each can be done in time $O(n)$.
- You will show this later.

Contractions and Cuts

Lemma: If two original nodes $\underline{u}, \underline{v} \in V$ are merged into the same node of the contracted graph, there is a path connecting u and v in the original graph s.t. all edges on the path are contracted.

Proof:

- Contracting an edge $\{x, y\}$ merges the node sets represented by x and y and does not change any of the other node sets.
- The claim the follows by induction on the number of edge contractions.

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) cannot get smaller.

Proof:

- All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph G as follows:
- For a node u of the contracted graph, let S_{u} be the set of original nodes that have been merged into u (the nodes that u represents)
- Consider a cut (A, B) of the contracted graph
- $\left(A^{\prime}, B^{\prime}\right)$ with

$$
A^{\prime}:=\bigcup_{u \in A} S_{u}, \quad B^{\prime}:=\bigcup_{v \in B} S_{v}
$$

is a cut of G.

- The edges crossing cut (A, B) are in one-to-one correspondence with the edges crossing cut (A^{\prime}, B^{\prime}).

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (A, B) of the input graph G if and only if it never contracts an edge crossing (A, B).

Proof:

1. If an edge crossing (A, B) is contracted, a pair of nodes $u \in A$, $v \in V$ is merged into the same node and the algorithm outputs a cut different from (A, B).
2. If no edge of (A, B) is contracted, no two nodes $u \in A, \underline{v \in B}$ end up in the same contracted node because every path connecting u and v in G contains some edge crossing (A, B)

In the end there are only 2 sets \rightarrow output is (A, B)

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$.

$$
\sum_{i} \operatorname{deg}(v)=2 \cdot m
$$

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k, G has at least $\mathrm{kn} / 2$ edges.

Proof:

- Min cut has size $\underline{k} \Rightarrow$ all nodes have degree $\geq k$
- A node v of degree $<k$ gives a cut $(\{v\}, V \backslash\{v\})$ of size $<k$
- Number of edges $m=1 / 2 \cdot \sum_{v} \operatorname{deg}(v) \geqslant \frac{1}{2} \cdot n \cdot k$

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$. Proof:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.

$$
1,2, \ldots, i_{2}^{\prime} \ldots, n-2
$$

- Before contraction i, there are $n+1-i$ nodes
\rightarrow and thus $\geq \underline{(n+1-i) k / 2}$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$
\frac{\underline{K}}{\frac{(n+1-i) k}{2}}=\frac{2}{n+1-i} .
$$

Getting The Min Cut
Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$.
Proof:

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step \underline{i} is at most ${ }^{2} / n+1-i$.
- Event \mathcal{E}_{i} : edge contracted in step i is not crossing $(\underline{A, B})$

Goal: $\mathbb{P}(a l g$. returns $(A, B))=\mathbb{P}\left(\varepsilon_{1} \cap \varepsilon_{2} \cap \ldots \cap \varepsilon_{n-2}\right)$

$$
=\mathbb{P}\left(\varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{2} \mid \varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{3} \mid \varepsilon_{1} n \varepsilon_{2}\right) \cdot \ldots \cdot \mathbb{P}\left(\varepsilon_{n-2} \mid \varepsilon_{1} n \ldots n \varepsilon_{n-3}\right)
$$

$$
\mathbb{P}\left(\varepsilon_{i} \mid \varepsilon_{1} \cap \ldots n \varepsilon_{i-1}\right) \geqslant 1-\frac{2}{n+1-i}
$$

Getting The Min Cut
Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$.
(themin.cut (A, B))
Proof:

- $\mathbb{P}\left(\varepsilon_{i+1} \mid \mathcal{E}_{1} \cap \cdots \cap \mathcal{E}_{i}\right) \geqslant 1-\frac{2}{n-i}=\frac{n-i-2}{n-i}$
- No edge crossing (A, B) contracted: event $\mathcal{E}=\bigcap_{i=1}^{n-2} \varepsilon_{i}$

$$
\begin{aligned}
\mathbb{P}\left(\varepsilon_{1} n \ldots n \varepsilon_{n-2}\right) & =\mathbb{P}\left(\varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon _ { 2 } (\varepsilon _ { 1 }) \cdot \ldots \cdot \mathbb { P } \left(\varepsilon_{n-2}\left(\varepsilon_{1 n \ldots n} \varepsilon_{n-3}\right)\right.\right. \\
& \geqslant \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \cdots \cdots \cdot \frac{3}{8} \cdot \frac{2}{4} \cdot \frac{1}{3} \\
& =\frac{2}{n(n-1)}=\frac{1}{\binom{n}{2}}
\end{aligned}
$$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O\left(n^{2} \log n\right)$ times, one of the $O\left(n^{2} \log n\right)$ instances returns a min. cut w.h.p.

Proof:

$$
1-\frac{1}{n^{c}}
$$

- Probability to not get a minimum cut in $c \cdot\binom{n}{2} \cdot \ln n$ iterations:
$1+x \leqslant e^{+x} \quad(\forall x \in \mathbb{R})$

$$
\left(1-\frac{1}{\binom{n}{2}}\right)^{\underline{c \cdot\binom{n}{2} \cdot \ln n}}<e^{-\underline{c \ln n}}=\frac{1}{\underline{n^{c}}}
$$

Corollary: The contraction algorithm allows to compute a minimum cut in $O\left(n^{4} \log n\right)$ time w.h.p.

- It remains to show that each instance can be implemented in $O\left(n^{2}\right)$ time.

Implementing Edge Contractions

Edge Contraction:

- Given: multigraph with n nodes
- assume that set of nodes is $\{1, \ldots, n\}$
- Goal: contract edge $\{u, v\}$

Data Structure

- We can use either adjacency lists or an adjacency matrix
- Entry in row i and column j : \#edges between nodes i and j
- Example:

$$
A \rightarrow\left(\begin{array}{lllll}
0 & 2 & 0 & 1 & 0 \\
2 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 3 \\
0 & 0 & 1 & 3 & 0
\end{array}\right)
$$

Contracting An Edge

Example: Contract one of the edges between 3 and 5

	1	2	3	4	5	6	7
1	0	1	0	3	0	0	0
2	1	0	1	0	1	2	0
$\rightarrow 3$	0	1	0	0	2	2	0
4	3	0	0	0	1	0	0
$\rightarrow 5$	0	1	2	1	0	1	1
6	0	2	2	0	1	0	1
7	0	0	0	0	1	1	0
\{3,5\}	0	2	¢о	1	\leqslant	3	1

Contracting An Edge

Example: Contract one of the edges between 3 and 5

Contracting An Edge

Example: Contract one of the edges between 3 and 5

	1	2	35	4	6	
1	0	1	0	3	0	0
2	1	0	2	0	2	0
$\rightarrow 35$	0	2	0	1	3	1
4	3	0	1	0	0	0
7	7	τ		T	20	
6	0	2	3	0	0	1
7	0	0	1	0	1	0

$\{3,5\}$| 0 | 2 | | 1 | | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Contracting an Edge

Claim: Given the adjacency matrix of an n-node multigraph and an edge $\{u, v\}$, one can contract the edge $\{u, v\}$ in time $O(n)$.

- Row/column of combined node $\{u, v\}$ is sum of rows/columns of u and v
- Row/column of u can be replaced by new row/column of combined node $\{u, v\}$
- Swap row/column of v with last row/column in order to have the new ($n-1$)-node multigraph as a contiguous $(n-1) \times(n-1)$ submatrix

Finding a Random Edge

- We need to contract a uniformly random edge
- How to find a uniformly random edge in a multigraph?
- Finding a random non-zero entry (with the right probability) in an adjacency matrix costs $O \underline{\left(n^{2}\right)}$.

Idea for more efficient algorithm:

- First choose a random node u
- with probability proportional to the degree (\#edges) of u
- Pick a random edge of u
- only need to look at one row \rightarrow time $O(n)$

$$
\overrightarrow{|12| 0|3| ज|0| 2 \mid \ldots} \text { tolal \#edges : d }
$$

$$
\frac{1}{d},\left(1-\frac{1}{d}\right) \cdot \frac{2}{d-1}=\frac{2}{d},\left(1-\frac{3}{d}\right) \frac{3}{d-3}=\frac{3}{d}
$$

Choose a Random Node
Edge Sampling:

1. Choose a node $u \in V$ with probability

$$
\frac{\overline{\operatorname{deg}}(u)}{\sum_{v \in V} \operatorname{deg}(v)}=\frac{\operatorname{deg}(u)}{\underline{2 m}}
$$

2. Choose a uniformly random edge of $u \longleftarrow$ time $O(n)$

$$
\mathbb{P}(\text { pice } e)=\frac{\operatorname{deg}(m)}{2 m} \cdot \frac{1}{\operatorname{deg}(m)}+\frac{\operatorname{deg}(v)}{2 m} \cdot \frac{1}{\operatorname{deg}(v)}=\frac{1}{2 m}+\frac{1}{2 m}=\frac{1}{m}
$$

Choose a Random Node

- We need to choose a random node u with probability $\frac{\operatorname{deg}(u)}{2 m}$
- Keep track of the number of edges m and maintain an array with the degrees of all the nodes
- Can be done with essentially no extra cost when doing edge contractions

Choose a random node:

```
degsum = 0;
for all nodes u\inV:
    with probability }\frac{\operatorname{deg}(u)}{2m-\operatorname{degsum}
            pick node u; terminate
    else
    degsum += deg(u)
```


Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O\left(n^{2} \log n\right)$ times, one of the $O\left(n^{2} \log n\right)$ instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum cut in $O\left(n^{4} \log n\right)$ time w.h.p.

- One instance consists of $n-2$ edge contractions
- Each edge contraction can be carried out in time $O(n)$
- Actually: O (current \#nodes)
- Time per instance of the contraction algorithm: $\underline{\underline{O\left(n^{2}\right)}}$

Can We Do Better?

- Time $O\left(n^{4} \log n\right)$ is not very spectacular, a simple max flow based implementation has time $O\left(n^{4}\right)$.

However, we will see that the contraction algorithm is nevertheless very interesting because:

1. The algorithm can be improved to beat every known deterministic algorithm.
2. It allows to obtain strong statements about the distribution of cuts in graphs.

Better Randomized Algorithm

Recall:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Throughout the algorithm, the edge connectivity is at least k and therefore each node has degree $\geq k$
- Before contraction i, there are $n+1-i$ nodes and thus at least $(n+1-i) k / 2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$
\frac{k}{\frac{(n+1-i) k}{2}}=\frac{2}{n+1-i} .
$$

Improving the Contraction Algorithm

- For a specific min cut (A, B), if (A, B) survives the first i contractions,

$$
\mathbb{P}(\text { edge crossing }(A, B) \text { in contraction } \underline{\underline{i+1}}) \leq \frac{2}{\underline{\underline{n-i}}} .
$$

- Observation: The probability only gets large for large i
- Idea: The early steps are much safer than the late steps. Maybe we can repeat the late steps more often than the early ones.

Safe Contraction Phase
$n-\frac{n}{\sqrt{2}}$
Lemma: A given min cut (A, B) of an n-node graph G survives the first $n-\lceil n / \sqrt{2}+1\rceil$ contractions, with probability $>1 / 2$.
Proof:

- Event \mathcal{E}_{i} : cut (A, B) survives contraction i
- Probability that (A, B) survives the first $n-t$ contractions:

$$
\begin{array}{ll}
\geqslant \frac{n-2}{\frac{n}{2}} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \ldots \cdot \frac{t}{t+2} \cdot \frac{t-1}{t+1}=\frac{t(t-1)}{n(n-1)} \\
t=\left[\frac{n}{\sqrt{2}}+1\right] & =\frac{t}{n} \cdot \frac{t-1}{n-1} \\
\geqslant \frac{n}{\sqrt{2}}+1 & \geqslant \frac{n / \sqrt{2}+1}{n} \cdot \frac{n / \sqrt{2}}{n-1}>\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}=\frac{1}{2}
\end{array}
$$

Better Randomized Algorithm

Let's simplify a bit:

- Pretend that $n / \sqrt{2}$ is an integer (for all n we will need it).
- Assume that a given min cut survives the first $n-n / \sqrt{2}$ contractions with probability $\geq 1 / 2$.

contract($\boldsymbol{G}, \boldsymbol{t}$):

- Starting with n-node graph G, perform $n-t$ edge contractions such that the new graph has t nodes.

mincut (G) :

1. $X_{1}:=\operatorname{mincut}(\operatorname{contract}(\underline{G}, n / \sqrt{2})) ;{ }^{n-1 / \sqrt{2}}$
2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;

Success Probability

mincut (G) :

1. $X_{1}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;
$\boldsymbol{P}(\boldsymbol{n})$: probability that the above algorithm returns a min cut when \Longrightarrow applied to a graph with n nodes.

- Probability that X_{1} is a \min cut $\geq \frac{1}{2} \cdot P\left(\frac{4}{2}\right)$

Recursion:
$P(n) \geqslant 1-\left(1-\frac{1}{2} P(n / \sqrt{2})\right)^{2}=P\left(\frac{n}{\sqrt{2}}\right)-\frac{1}{4} P\left(\frac{n}{\sqrt{2}}\right)^{2}, \quad P(2)=1$

Success Probability $\quad P(x) \geqslant \frac{1}{\log _{2} u}$
Theorem: The recursive randomized min cut algorithm returns a minimum cut with probability at least $1 / \log _{2} n$.

Proof (by induction on n):

$$
P(n)=P\left(\frac{n}{\sqrt{2}}\right)-\frac{1}{4} \cdot P\left(\frac{n}{\sqrt{2}}\right)^{2}, \quad P(2)=1
$$

Base case: $n=2$
Ind. Step: $P(n)=P(n / \sqrt{2})-\frac{1}{4} P(n / \sqrt{2})^{2}$

$$
x-\frac{x^{2}}{4}
$$

$$
\begin{aligned}
\geqslant \frac{1}{\log (4 / \sqrt{2})}-\frac{1}{4} \frac{1}{\log (4 / \sqrt{2})^{2}} & =\frac{1}{\log (4 / \sqrt{2})}\left(1-\frac{1}{4} \cdot \frac{1}{\log (4 / \sqrt{2})}\right) \\
=\frac{1}{\log n-1 / 2}\left(1-\frac{1}{4 \log n}\right) & =\frac{1}{\log n-\frac{1}{2}}\left(\frac{4 \log n-3}{4 \log n-2}\right) \\
& =\frac{4 \log n-3}{4 \log _{n}-4 \log n+1} \geqslant \frac{1}{\log n}
\end{aligned}
$$

Running Time

1. $X_{1}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;

Recursion:

- $T(n)$: time to apply algorithm to n-node graphs
- Recursive calls: $2 T(n / \sqrt{2})$
- Number of contractions to get to $n / \sqrt{2}$ nodes: $O(n)$

$$
T(n)=2 T\left(\frac{n}{\sqrt{2}}\right)+O\left(n^{2}\right), \quad T(2)=O(1)
$$

