
Chapter 7

Randomization

Algorithm Theory
WS 2015/16

Fabian Kuhn

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Types of Randomized Algorithms

Las Vegas Algorithm:

Åalways a correct solution

Å running time is a random variable

ÅExample: randomized quicksort, contention resolution

Monte Carlo Algorithm:

Åprobabilistic correctness guarantee (mostly correct)

Å fixed (deterministic) running time

ÅExample: primality test

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Minimum Cut

Reminder: Given a graph Ὃ ὠȟὉ, a cut is a partition ὃȟὄ
of ὠ such that ὠ ὃ᷾ὄ, ὃ᷊ὄ ,ɲ ὃȟὄ ɲ

Size of the cut ═ȟ║ : # of edges crossing the cut

ÅFor weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size ‗Ὃ)

Maximum-flow based algorithm:

ÅFix ί, compute min ί-ὸ-cut for all ὸ ί

Åὕάẗ‗Ὃ ὕάὲ per ί-ὸ cut

ÅGives an /άὲ‗Ὃ ὕάὲ -algorithm

Best-known deterministic algorithm: ὕάὲ ὲÌÏÇὲ

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Edge Contractions

Å In the following, we consider multi-graphs that can have
multiple edges (but no self-loops)

Contracting edge ◊ȟ○:

ÅReplace nodes ό, ὺ by new node ύ

ÅFor all edges όȟὼ and ὺȟὼ, add an edge ύȟὼ

ÅRemove self-loops created at node ύ

not ok ok

 ╪ ╪

 ◊ ◊

 ○ ○

 ╬ ╬

 ╫ ╫

 ╪ ╪
 ◌ ◌ ╬ ╬

 ╫ ╫

 contract ◊ȟ○ contract ◊ȟ○

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Properties of Edge Contractions

Nodes:

ÅAfter contracting όȟὺ, the new node represents ό and ὺ

ÅAfter a series of contractions, each node represents a subset of
the original nodes

Cuts:

ÅAssume in the contracted graph, ύ represents nodes Ὓ Ṓὠ

ÅThe edges of a node ύ in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut Ὓȟὠ Ὓʌ

ȟ ȟ

ȟ

ȟ

ȟȟ

ȟ

ȟȟȟ

ȟ ȟ ȟ ȟ ȟ ȟȟ

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Randomized Contraction Algorithm

Algorithm:

 while there are ς nodes do

 contract a uniformly random edge

 return cut induced by the last two remaining nodes

 (cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least ρὕὲϳ .

ÅWe will show this next.

Theorem: The random contraction algorithm can be implemented
in time ὕὲ .

ÅThere are ὲ ς contractions, each can be done in time ὕὲ.

ÅYou will show this later.

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Contractions and Cuts

Lemma: If two original nodes όȟὺᶰὠ are merged into the same
node of the contracted graph, there is a path connecting ό and ὺ
in the original graph s.t. all edges on the path are contracted.

Proof:

ÅContracting an edge ὼȟώ merges the node sets represented by
ὼ and ώ and does not change any of the other node sets.

ÅThe claim the follows by induction on the number of edge
contractions.

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

ÅAll cuts in a (partially) contracted graph correspond to cuts of
the same size in the original graph Ὃ as follows:
ïFor a node ό of the contracted graph, let Ὓ be the set of original nodes

that have been merged into ό (the nodes that ό represents)

ïConsider a cut ὃȟὄ of the contracted graph

ï ὃȟὄ with

ὃḧ Ὓ

ᶰ

ȟ ὄḧ Ὓ

ᶰ

is a cut of Ὃ.

ïThe edges crossing cut ὃȟὄ are in one-to-one correspondence with the
edges crossing cut ὃȟὄ .

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut ὃȟὄ of the input
graph Ὃ if and only if it never contracts an edge crossing ὃȟὄ .

Proof:

1. If an edge crossing ὃȟὄ is contracted, a pair of nodes όᶰὃ,
ὺᶰὠ is merged into the same node and the algorithm outputs
a cut different from ὃȟὄ .

2. If no edge of ὃȟὄ is contracted, no two nodes όᶰὃ, ὺᶰὄ
end up in the same contracted node because every path
connecting ό and ὺ in Ὃ contains some edge crossing ὃȟὄ

In the end there are only 2 sets Ą output is ὃȟὄ

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum
cut is at least ςὲὲ ρϳ .

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph Ὃ (no self-loops) is Ὧ,
Ὃ has at least Ὧὲςϳ edges.

Proof:

ÅMin cut has size Ὧ all nodes have degree Ὧ
ïA node ὺ of degree Ὧ gives a cut ὺȟὠᶺὺ of size Ὧ

ÅNumber of edges ά ϳẗВ ÄÅÇὺ

