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Types of Randomized Algorithms 

Las Vegas Algorithm: 

Åalways a correct solution 

Å running time is a random variable 

 

ÅExample: randomized quicksort, contention resolution 

 

Monte Carlo Algorithm: 

Åprobabilistic correctness guarantee (mostly correct) 

Å fixed (deterministic) running time  

 

ÅExample: primality test 
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Minimum Cut 

Reminder: Given a graph Ὃ ὠȟὉ, a cut is a partition ὃȟὄ  
of ὠ such that ὠ ὃ᷾ὄ, ὃ᷊ὄ ,ɲ ὃȟὄ  ɲ
 

Size of the cut ═ȟ║ : # of edges crossing the cut 

ÅFor weighted graphs, total edge weight crossing the cut 
 

Goal: Find a cut of minimal size (i.e., of size ‗Ὃ) 
 

Maximum-flow based algorithm: 

ÅFix ί, compute min ί-ὸ-cut for all ὸ ί 

Åὕάẗ‗Ὃ ὕάὲ per ί-ὸ cut 

ÅGives an /άὲ‗Ὃ ὕάὲ -algorithm  
 

Best-known deterministic algorithm: ὕάὲ ὲÌÏÇὲ 
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Edge Contractions 

Å In the following, we consider multi-graphs that can have 
multiple edges (but no self-loops) 

 

 

 

Contracting edge ◊ȟ○: 

ÅReplace nodes ό, ὺ by new node ύ 

ÅFor all edges όȟὼ and ὺȟὼ, add an edge ύȟὼ 

ÅRemove self-loops created at node ύ 
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Properties of Edge Contractions 

Nodes: 

ÅAfter contracting όȟὺ, the new node represents ό and ὺ 

ÅAfter a series of contractions, each node represents a subset of 
the original nodes 

 

 

 

 
 

Cuts: 

ÅAssume in the contracted graph, ύ represents nodes Ὓ Ṓὠ 

ÅThe edges of a node ύ in a contracted graph are in a one-to-one 
correspondence with the edges crossing the cut Ὓȟὠ Ὓʌ  
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Randomized Contraction Algorithm 

Algorithm: 
 

    while there are ς nodes do 

          contract a uniformly random edge 

    return cut induced by the last two remaining nodes 

                 (cut defined by the original node sets represented by the last 2 nodes)  
 

Theorem: The random contraction algorithm returns a minimum 
cut with probability at least ρὕὲϳ . 

ÅWe will show this next. 
 

Theorem: The random contraction algorithm can be implemented 
in time ὕὲ . 

ÅThere are ὲ ς contractions, each can be done in time ὕὲ. 

ÅYou will show this later. 
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Contractions and Cuts 

Lemma: If two original nodes όȟὺᶰὠ are merged into the same 
node of the contracted graph, there is a path connecting ό and ὺ 
in the original graph s.t. all edges on the path are contracted. 
 

Proof: 

ÅContracting an edge ὼȟώ merges the node sets represented by 
ὼ and ώ and does not change any of the other node sets. 
 

ÅThe claim the follows by induction on the number of edge 
contractions. 
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Contractions and Cuts 

Lemma: During the contraction algorithm, the edge connectivity 
(i.e., the size of the min. cut) cannot get smaller. 
 

Proof: 

ÅAll cuts in a (partially) contracted graph correspond to cuts of 
the same size in the original graph Ὃ as follows: 
ïFor a node ό of the contracted graph, let Ὓ be the set of original nodes 

that have been merged into ό (the nodes that ό represents) 

ïConsider a cut ὃȟὄ  of the contracted graph 

ï ὃȟὄ  with 

ὃḧ Ὓ

ᶰ

ȟ ὄḧ Ὓ

ᶰ

 

is a cut of Ὃ. 

ïThe edges crossing cut ὃȟὄ  are in one-to-one correspondence with the 
edges crossing cut ὃȟὄ . 
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Contraction and Cuts 

Lemma: The contraction algorithm outputs a cut ὃȟὄ  of the input 
graph Ὃ if and only if it never contracts an edge crossing ὃȟὄ . 
 

Proof: 

1. If an edge crossing ὃȟὄ  is contracted, a pair of nodes όᶰὃ, 
ὺᶰὠ is merged into the same node and the algorithm outputs 
a cut different from ὃȟὄ . 

 

2. If no edge of ὃȟὄ  is contracted, no two nodes όᶰὃ, ὺᶰὄ 
end up in the same contracted node because every path 
connecting ό and ὺ in Ὃ contains some edge crossing ὃȟὄ  
 
In the end there are only 2 sets Ą output is ὃȟὄ  
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Getting The Min Cut 

Theorem: The probability that the algorithm outputs a minimum 
cut is at least ςὲὲ ρϳ . 

 

To prove the theorem, we need the following claim: 

 

Claim: If the minimum cut size of a multigraph Ὃ (no self-loops) is Ὧ, 
Ὃ has at least Ὧὲςϳ  edges. 
 

Proof: 

ÅMin cut has size Ὧ  all nodes have degree Ὧ 
ïA node ὺ of degree Ὧ gives a cut ὺȟὠᶺὺ  of size Ὧ 

 

ÅNumber of edges ά ϳẗВ ÄÅÇὺ 


