

Chapter 7 Randomization

Algorithm Theory WS 2015/16

Fabian Kuhn

Types of Randomized Algorithms

Las Vegas Algorithm:

- always a correct solution
- running time is a random variable

Zulun

• Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

- probabilistic correctness guarantee (mostly correct)
- fixed (deterministic) running time
- Example: primality test

Minimum Cut

Reminder: Given a graph G = (V, E), a cut is a partition (A, B) of V such that $V = A \cup B$, $A \cap B = \emptyset$, $A, B \neq \emptyset$

Size of the cut (A, B): # of edges crossing the cut

For weighted graphs, total edge weight crossing the cut
 edge connectivity of G

Goal: Find a cut of minimal size (i.e., of size $\lambda(G)$)

Maximum-flow based algorithm:

- Fix s, compute min s-t-cut for all $t \neq s$
- $O(m \cdot \lambda(G)) = O(mn)$ per *s*-*t* cut
- Gives an $O(mn\lambda(G)) = O(mn^2)$ -algorithm

Best-known deterministic algorithm: $O(mn + n^2 \log n)$

Algorithm Theory, WS 2015/16

lense:

Edge Contractions

not ok

Contracting edge $\{u, v\}$:

- Replace nodes *u*, *v* by new node *w*
- For all edges $\{\underline{u, x}\}$ and $\{\underline{v, x}\}$, add an edge $\{\underline{w, x}\}$
- Remove self-loops created at node w

Properties of Edge Contractions

Nodes:

- After contracting {*u*, *v*}, the new node represents *u* and *v*
- After a series of contractions, each node represents a subset of the original nodes

Cuts:

- Assume in the contracted graph, w represents nodes $S_w \subset V$
- The edges of a node w in a contracted graph are in a <u>one-to-one</u> correspondence with the edges crossing the cut $(S_w, V \setminus S_w)$

Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do

contract a uniformly random edge

return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum cut with probability at least $1/O(n^2)$.

We will show this next.

Theorem: The random contraction algorithm can be implemented in time $O(n^2)$.

- There are n 2 contractions, each can be done in time O(n).
- You will show this later.

Algorithm Theory, WS 2015/16

Contractions and Cuts

Lemma: If two original nodes $\underline{u}, \underline{v} \in V$ are merged into the same node of the contracted graph, there is a path connecting \underline{u} and \underline{v} in the original graph s.t. all edges on the path are contracted.

Proof:

- Contracting an edge {x, y} merges the node sets represented by x and y and does not change any of the other node sets.
- The claim the follows by induction on the number of edge contractions.

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) cannot get smaller.

Proof:

- All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph *G* as follows:
 - For a node u of the contracted graph, let S_u be the set of original nodes that have been merged into u (the nodes that u represents)
 - Consider a cut (A, B) of the contracted graph
 - -(A',B') with

$$\underline{A'} \coloneqq \bigcup_{u \in A} S_u, \qquad \underline{B'} \coloneqq \bigcup_{v \in B} S_v$$

is a cut of G.

- The edges crossing cut (A, B) are in one-to-one correspondence with the edges crossing cut (A', B').

Fabian Kuhn

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (A, B) of the input graph G if and only if it never contracts an edge crossing (A, B).

Proof:

- 1. If an edge crossing (A, B) is contracted, a pair of nodes $u \in A$, $v \in V$ is merged into the same node and the algorithm outputs a cut different from (A, B).

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

U~7v3

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k, G has at least kn/2 edges.

Proof:

- Min cut has size $k \Longrightarrow$ all nodes have degree $\ge k$
 - A node v of degree < k gives a cut $(\{v\}, V \setminus \{v\})$ of size < k
- Number of edges $\underline{m} = \frac{1}{2} \cdot \sum_{v} \underline{\deg(v)} \ge \frac{1}{2} \cdot \mathbf{n} \cdot \mathbf{k}$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

Proof:

Specifi

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted. 1,2,...,i,...,w-2
- Before contraction *i*, there are n + 1 i nodes • \rightarrow and thus $\geq (n + 1 - i)k/2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step *i* is at most

$$\frac{\underline{k}}{(n+1-i)k} = \frac{2}{n+1-i}.$$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

Proof:

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step *i* is at most 2/n+1-i.
- Event \mathcal{E}_i : edge contracted in step *i* is **not** crossing $(\underline{A}, \underline{B})$ God: $\mathbb{P}(alg. returns (\underline{A}, \underline{B})) = \mathbb{P}(\underline{E}_1 \cap \underline{E}_2 \cap \dots \cap \underline{E}_{n-2})$ $= \mathbb{P}(\underline{E}_1) \cdot \mathbb{P}(\underline{E}_2 | \underline{E}_1) \cdot \mathbb{P}(\underline{E}_3 | \underline{E}_1 \cap \underline{E}_2) \cdot \dots \cdot \mathbb{P}(\underline{E}_{n-2} | \underline{E}_1 \cap \dots \cap \underline{E}_{n-3})$

$$\mathbb{P}(\mathcal{E}_{1}|\mathcal{E}_{n-n}\mathcal{E}_{1-i}) \geq 1 - \frac{2}{n+1-i}$$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1). (Hemin.cut(A,B)) **Proof:**

- $\mathbb{P}(\mathcal{E}_{i+1}|\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_i) \ge \mathcal{Z}_{n-i} = \frac{n-i-2}{n-i}$
- No edge crossing (A, B) contracted: event $\mathcal{E} = \bigcap_{i=1}^{n-2} \mathcal{E}_i$
- $\mathbb{P}(\mathcal{E}, n \dots n \mathcal{E}_{n-2}) = \mathbb{P}(\mathcal{E}_{1}) \cdot \mathbb{P}(\mathcal{E}_{2}|\mathcal{E}_{1}) \cdot \dots \cdot \mathbb{P}(\mathcal{E}_{n-2}(\mathcal{E}_{1}, \dots, \mathcal{E}_{n-3}))$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O(n^2 \log n)$ times, one of the $O(n^2 \log n)$ instances returns a min. cut w.h.p.

Proof:

Probability to not get a minimum cut in $c \cdot {n \choose 2} \cdot \ln n$ iterations:

 $1 - \frac{1}{1c}$

$$\begin{array}{l} |+x \leq e^{+x} \quad (\forall x \in \mathbb{R}) \\ \left(e^{-\frac{1}{2}}\right)^{c\binom{n}{2}} \left(e^{a}\right)^{b} = e^{a \cdot b} \end{array} \left(1 - \frac{1}{\binom{n}{2}}\right)^{\frac{c \cdot \binom{n}{2} \cdot \ln n}{\binom{n}{2}}} < e^{-c \ln n} = \frac{1}{\frac{n^{c}}{\binom{n}{2}}} \end{array}$$

Corollary: The contraction algorithm allows to compute a minimum cut in $O(n^4 \log n)$ time w.h.p.

• It remains to show that each instance can be implemented in $O(n^2)$ time.

Algorithm Theory, WS 2015/16

Fabian Kuhn

Implementing Edge Contractions

Edge Contraction:

- Given: multigraph with *n* nodes
 - assume that set of nodes is {1, ..., n}
- Goal: contract edge {*u*, *v*}

Data Structure

- We can use either adjacency lists or an adjacency matrix
- Entry in row *i* and column *j*: #edges between nodes *i* and *j*
- Example:

$$A = \begin{pmatrix} 0 & 2 & 0 & 1 & 0 \\ 2 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 3 & 0 \end{pmatrix}$$

Contracting An Edge

Example: Contract one of the edges between 3 and 5

Contracting An Edge

Example: Contract one of the edges between 3 and 5

Contracting An Edge

Contracting an Edge

Claim: Given the adjacency matrix of an <u>*n*-node</u> multigraph and an edge $\{u, v\}$, one can contract the edge $\{u, v\}$ in time O(n).

- Row/column of combined node {u, v} is sum of rows/columns of u and v
- Row/column of u can be replaced by new row/column of combined node {u, v}
- Swap row/column of v with last row/column in order to have the new (n-1)-node multigraph as a contiguous $(n-1) \times (n-1)$ submatrix

Finding a Random Edge

- We need to contract a uniformly random edge
- How to find a uniformly random edge in a multigraph?
 - Finding a random non-zero entry (with the right probability) in an adjacency matrix costs $O(n^2)$.

Idea for more efficient algorithm:

- First choose a random node *u*
 - with probability proportional to the degree (#edges) of u
- Pick a random edge of *u*
 - only need to look at one row \rightarrow time O(n)

$$\frac{1}{d}, (1 - \frac{1}{d}) \cdot \frac{2}{d - 1} = \frac{2}{d}, (1 - \frac{3}{d}) \cdot \frac{3}{d - 3} = \frac{3}{d}$$

Edge Sampling:

2. Choose a uniformly random edge of $u \ll here O(n)$

Choose a Random Node

- We need to choose a random node u with probability $\frac{\deg(u)}{2m}$
- Keep track of the number of edges *m* and maintain an array with the degrees of all the nodes
 - Can be done with essentially no extra cost when doing edge contractions

Choose a random node:

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O(n^2 \log n)$ times, one of the $O(n^2 \log n)$ instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum cut in $O(n^4 \log n)$ time w.h.p.

- One instance consists of n-2 edge contractions
- Each edge contraction can be carried out in time O(n)
 Actually: O(current #nodes)
- Time per instance of the contraction algorithm: $O(n^2)$

Can We Do Better?

• Time $O(n^4 \log n)$ is not very spectacular, a simple max flow based implementation has time $O(n^4)$.

However, we will see that the contraction algorithm is nevertheless very interesting because:

- 1. The algorithm can be improved to beat every known deterministic algorithm.
- 2. It allows to obtain strong statements about the distribution of cuts in graphs.

Better Randomized Algorithm

Recall:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Throughout the algorithm, the edge connectivity is at least k and therefore each node has degree ≥ k
- Before contraction i, there are n + 1 i nodes and thus at least (n + 1 i)k/2 edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step *i* is at most

$$\frac{k}{\frac{(n+1-i)k}{2}} = \frac{2}{\frac{n+1-i}{2}}.$$

Improving the Contraction Algorithm

For a specific min cut (A, B), if (A, B) survives the first i contractions,

 $\mathbb{P}(\text{edge crossing } (A, B) \text{ in contraction } \underbrace{i+1}_{=}) \leq \frac{z}{n-i}.$

- **Observation:** The probability only gets large for large *i*
- Idea: The early steps are much safer than the late steps.
 Maybe we can repeat the late steps more often than the early ones.

Safe Contraction Phase u - 🛱

Lemma: A given min cut (A, B) of an *n*-node graph *G* survives the first $n - \lfloor n/\sqrt{2} + 1 \rfloor$ contractions, with probability > 1/2. **Proof:**

- Event \mathcal{E}_i : cut (A, B) survives contraction i
- Probability that (A, B) survives the first n t contractions:

$$\geq \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \dots \cdot \frac{4}{t+2} \cdot \frac{4-1}{t+1} = \frac{4(4-1)}{n(n-1)}$$
$$= \frac{4}{n} \cdot \frac{4-1}{n-1}$$
$$= \frac{4}{n} \cdot \frac{4-1}{n-1}$$
$$\geq \frac{4}{n} \cdot \frac{4-1}{n-1}$$
$$\geq \frac{4}{n} \cdot \frac{4-1}{n-1}$$

Better Randomized Algorithm

Let's simplify a bit:

- Pretend that $n/\sqrt{2}$ is an integer (for all n we will need it).
- Assume that a given min cut survives the first $n n/\sqrt{2}$ contractions with probability $\geq 1/2$.

contract(G, t):

• Starting with *n*-node graph *G*, perform n - t edge contractions such that the new graph has <u>t</u> nodes.

mincut(G):

- 1. $X_1 \coloneqq \operatorname{mincut}\left(\operatorname{contract}(\underline{G}, n/\sqrt{2})\right);$
- 2. $X_2 \coloneqq \operatorname{mincut}\left(\operatorname{contract}(G, n/\sqrt{2})\right);$
- 3. **return** $\min\{X_1, X_2\};$

Algorithm Theory, WS 2015/16

Fabian Kuhn

Success Probability

mincut(G):

1.
$$X_1 \coloneqq \operatorname{mincut}\left(\operatorname{contract}(G, n/\sqrt{2})\right);$$

- 2. $X_2 \coloneqq \operatorname{mincut}\left(\operatorname{contract}(G, n/\sqrt{2})\right);$
- 3. **return** $\min\{X_1, X_2\};$
- P(n): probability that the above algorithm returns a min cut when applied to a graph with n nodes.
- Probability that X_1 is a min cut $\geq \frac{1}{2} \cdot \mathcal{P}(\frac{1}{2})$

Recursion:

$$P(u) \ge |-(1-\frac{1}{2}P(\frac{v}{6}))| = P(\frac{u}{6}) - \frac{1}{4}P(\frac{v}{6})^{2} = P(2) = |$$

Success Probability P(u) = the

30

Theorem: The recursive randomized min cut algorithm returns a minimum cut with probability at least $\frac{1}{\log_2 n}$.

Proof (by induction on *n*):

$$P(n) = P\left(\frac{n}{\sqrt{2}}\right) - \frac{1}{4} \cdot P\left(\frac{n}{\sqrt{2}}\right)^2, \qquad P(2) = 1$$

Base case:
$$n=2$$

 $lnd.Skq: P(n) = P(\frac{n}{2}) - \frac{1}{4}P(\frac{n}{62})^{2} \qquad x - \frac{x^{2}}{4}$
 $I.H. = \frac{1}{l_{05}(\frac{n}{2})} - \frac{1}{4}\frac{1}{l_{05}(\frac{n}{2})^{2}} = \frac{1}{l_{01}(\frac{n}{2})}\left(1 - \frac{1}{4}\cdot\frac{1}{l_{05}(\frac{n}{2})}\right)$
 $= \frac{1}{l_{01}n - \frac{1}{2}}\left(1 - \frac{1}{4l_{01}n - 2}\right) = \frac{1}{l_{01}n - \frac{1}{2}}\left(\frac{4l_{01}n - 3}{4l_{01}n - 2}\right)$
 $= \frac{4l_{01}n - 3}{4l_{02}n - 3} = \frac{1}{4l_{02}n - 3}$
 $= \frac{4l_{02}n - 3}{4l_{02}n - 4l_{02}n + 1} = \frac{1}{l_{05}n}$

Running Time

- 1. $X_1 \coloneqq \operatorname{mincut}\left(\operatorname{contract}(G, n/\sqrt{2})\right);$
- 2. $X_2 \coloneqq \operatorname{mincut}\left(\operatorname{contract}(G, n/\sqrt{2})\right);$
- 3. **return** $\min\{X_1, X_2\};$

Recursion:

- T(n): time to apply algorithm to n-node graphs
- Recursive calls: $2T \left(\frac{n}{\sqrt{2}} \right)$
- Number of contractions to get to $n/\sqrt{2}$ nodes: O(n)

$$T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + O(n^2), \qquad T(2) = O(1)$$