Chapter 7
Randomization

Algorithm Theory
WS 2015/16

Fabian Kuhn

UNI
I

FREIBURG

UNI

Types of Randomized Algorithms

FREIBURG

Las Vegas Algorithm:
e always a correct solution
* running time is a random variable

L

 Example: randomized quicksort, contention resolution

rMonte Carlo Algorithm:
* probabilistic correctness guarantee (mostly correct)
* fixed (deterministic) running time

L Example: primality test

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Minimum Cut \@

UNI

FREIBURG

Reminder: Given a graph ¢ = (V,E), a cut is a partition (4, B)
of VsuchthatV = AUB,ANB=Q9,A,B+0

Size of the cut (A, B): # of edges crossing the cut

* For weighted graphs, total edge weight crossing the cut
_ ol counacdhiviy of G
Goal: Find a cut of minimal size (i.e., of size A(G))

ock

Maximum-flow based algorithm:
* Fix s, compute min s-t-cutforallt # s

« 0(m- A(G)) = O(mn) per s-t cut
e Gives an O(mn/l(G)) = 0(mn?)-algorithm

Best-known deterministic algorithm: O (mn + n? logn)

T S w’)
W\ :
Algorithm Theory, WS 2015/16 Fabian Kuhn G W 3

Edge Contractions

|
FRE:BURG

UNI

* In the following, we consider multi-graphs that can have
multiple edges (but no self-loops)

ok not ok

4

=
Contracting edge {u, v}: Yﬁ___f%\‘/ <\ /7
 Replace nodes u, v by new node w < — 0

* Forall edges {u, x} and {v, x}, add an edge {w, x}

 Remove self-loops created at node w

‘ contract {u, v}

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

UNI
|

FREIBURG

Properties of Edge Contractions

Nodes:
* After contracting {u, v}, the new node represents u and v

e After a series of contractions, each node represents a subset of
the original nodes

(1,2

{5,(4,6)}
?/

(4,5,6)

(1, 2)‘P
{3,(4,5,6)}
d {

(3,4,5,6)
—

* Assume in the contracted graph, w represents nodes §,, C V

* The edges of a node w in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut (S,,, V \ S,,)

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Randomized Contraction Algorithm

UNI
|

FREIBURG

Algorithm:

while there are > 2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0(n?).
9

e We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 0(n?).

* There are n — 2 contractions, each can be done in time O(n).

Ta—

* You will show this later.
Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Contractions and Cuts

UNI
|

FREIBURG

Lemma: If two original nodes u, v eV are merged into the same
node of the contracted graph, there is a path connecting u and v
in the original graph s.t. all edges on the path are contracted.

Proof:

* Contracting an edge {x, y} merges the node sets represented by
x and y and does not change any of the other node sets.

* The claim the follows by induction on the number of edge
contractions.

S Q
) =L)

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Contractions and Cuts

UNI
|

FREIBURG

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

e All cuts in a (partially) contracted graph correspond to cuts of
the same size in the original graph G as follows:

— For a node u of the contracted graph, let S,, be the set of original nodes
that have been merged into u (the nodesthat u represents)

— Consider a cut (/ﬁ) of the contracted graph 75
— (4, B") with b
;4::: USu, ‘Bz':z USv
UEA VEB S
isacutof G. Q)

— The edges crossing cut (4, B) are in one-to-one correspondence with the
edges crossing cut (4, B).

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

UNI
FREIBURG

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (4, B) of the input
graph G if and only if it never contracts an edge crossing (4, B).

Proof:

1. If an edge crossing (A4, B) is contracted, a pair of nodes u € A4,
v € V is merged into the same node and the algorithm outputs
a cut different from (4, B).

2. If noedge of (4, B) is contracted, notwonodesu € A, v € B
end up in the same contracted node because every path

connecting u and v in G contains some edge crossing (4, B)
A v

In the end there are only 2 sets = outputis (4, B)

—

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

|
FREIBURG

Getting The Min Cut i

A

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Zaeﬂ.aw) — Z‘M

To prove the theorem, we need the following claim:
Q&SL cc»u.u.ushﬁ

>

-

Claim: If the minimum cut size of a multigraph G (no self-loops) is k,
G has at least kn/2 edges.
——

NPV
Proof: @

* Min cut has size k = all nodes have degree = k
— A node v of degree < k gives a cut ({v},V \ {v}) of size < k

wk

* Number of edgesm =1/, - Y, deg(v) = %—

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

UNI

Getting The Min Cut

FREIBURG

Q ij‘\ﬁ

Theorem: The probability that the algorithm outputs a minimum

cut is at least 2/n(n — 1). .;@
Proof:

* Consider a fixed min cut (4, B), assume (4, B) has size k

* The algorithm outputs (4, B) iff none of the k edges crossing
(4, B) gets contracted. 1,2, . --,8 .. w-2

L3

 Before contraction’i, therearen + 1 — i nodes
2> andthus> (n+ 1 —i)k/2 edges

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i is at most

k2
n+1-Dk n+1-1i
2

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

UNI

Getting The Min Cut

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:

* If no edge crossing (A, B) is contracted before, the probability to
contract an edge crossing (4, B) instep i isat most 2/, ,;_;.

 Event 8 edge contracted in step i is not crossing (A B)

Grod: ?(a(z% ehins AB) = T(E nExneen Eury)
= RE)-RELE) RE,NEnE)-...- WELaIE 00 E,,)

2

WENEnnEN 2\ -

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

UNI

Getting The Min Cut

FREIBURG

Theorem: The probability that the algorithm outputs a minimum

cutis at least 2/n(n — 1). (-K«.e m:u.cwlv(f\,m)
Proof: -

2_ W=
* IP)(81,+1|£1 NE)= = % = wn-d

* No edge crossing (4, B) contracted event £ = Nj=.

TS n-nE0) =T REIED - - [Kew, (€ “-;>

/\Azz u3 = us .3 2 1
R R U S A A

2
W-I) -
2)
=

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Randomized Min Cut Algorithm

UNI
FREIBURG

Theorem: If the contraction algorithm is repeated 0(n®logn)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.

\

Proof: | — _v\—‘

* Probability to not get a minimum cut in ¢ - (2) - In n iterations:

l+x < €+x (erm> 1 c-(g)-lnn 1
\ c(lu (1 — T) < e_w —g—

Q(T\ Ke_a)‘; o~ (2)

Corollary: The contraction algorithm allows to compute a minimum
cutin O(n*logn) time w.h.p.

* It remains to show that each instance can be implemented in

0(n?) time.
— 2
Algorithm Theory, WS 2015/16 Fabian Kuhn 14

UNI

Implementing Edge Contractions

FREIBURG

Edge Contraction:

* Given: multigraph with n nodes
— assume that set of nodes is {1, ..., n}

e Goal: contract edge {u, v}
Data Structure
* We can use eithelﬁ adjacency Iistgfor an adjacency matrix

* Entryinrow i and column j: #edges betqueen nodes i and j

01(N

 Example: _

|—>/2

C—3 -
ﬂ' A = g

!
2

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

Contracting An Edge

UNI

FREIBURG

Example: Contract one of the edges between 3 and 5

Algorithm Theory, WS 2015/16

13,5}

Fabian Kuhn

1 2 3 4 5 6 7
O}(1|10;3|]0(0]O0
110101120
0O(1(0|0|2|2]|0
| \ \ \ \ N\
(3 O) O) 0 1) O) O)
; 7 '] (]
O|1(2|1|0|11
0122|0101
O(0]O0|O0O|1 1|0
Z
olzle| | |Z|3]

16

Contracting An Edge

UNI
|

FREIBURG

Example: Contract one of the edges between 3 and 5

G—y 1
2
@l N

35 3
4
5
&) 6

7
7
{3,5}

Algorithm Theory, WS 2015/16 Fabian Kuhn

1 2 3 4 5 6 7
O(1,0|3[]0(0]0
17010120
01002210
310/{0(0(1]0]6O0
O(1(2(1]0]1]1
0220|101
O(0|]O0|0]1|1]0

17

Contracting An Edge

UNI
|

FREIBURG

Example: Contract one of the edges between 3 and 5

T—y
@ ™
35

Algorithm Theory, WS 2015/16

1 2 35 4 %6 7
11101103 <[o0ll0
21 lol2lof=21]0

= 350012101 7]3][1
All310]11]0 olo
7 ep AN
61 0 [3 (o \o 1
7Y0l0[1]0 110
(3510 1

Fabian Kuhn

18

Contracting an Edge

UNI
|

FREIBURG

Claim: Given the adjacency matrix of an n-node multigraph and

an edge {u, v}, one can contract the edge {u, v} in time O (n).
—

* Row/column of combined node {u, v} is sum of rows/columns
of uand v

* Row/column of u can be replaced by new row/column of
combined node {u, v}

e Swap row/column of v with last row/column in order to have
the new (n — 1)-node multigraph as a contiguous
(n—1) X (n — 1) submatrix

Algorithm Theory, WS 2015/16 Fabian Kuhn 19

Finding a Random Edge

UNI
FREIBURG

* We need to contract a uniformly random edge

* How to find a uniformly random edge in a multigraph?

— Finding a random non-zero entry (with the right probability) in an
adjacency matrix costs 0 (n?).

Idea for more efficient algorithm:

* First choose a random node u
— with probability proportional to the degree (#edges) of u

* Pickarandom edge of u
— only need to look at one row = time 0(n)

_—

(TaTereme =1 bl #egpes = &

3 £3
j , 0 ==2, (-3)a5 =2

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

Choose a Random Node

UNI

FREIBURG

Edge Sampling:
1. Choose a node u € IV with probability
—(;eggu} _ deg(u)
ZUEV deg(v) - Zé’rn
2. Choose a uniformly randomedge of u <— Huwwe O(w)

\://4_
Z4
7N) \ .
deatd (v 1 _ U\
W((‘n&,e = _%" .‘"57“‘ T deswv) T 2w T o T o
—

Algorithm Theory, WS 2015/16 Fabian Kuhn

21

Choose a Random Node

UNI

FREIBURG

* We need to choose a random node u with probability deg(u)

the degrees of all the nodes

2m

Keep track of the number of edges m and maintain an array with

— Can be done with essentially no extra cost when doing edge contractions

Choose a random node:
degsum = 0;

for all nodes uelvl:
deg(u)

with probability

pick node u; terminate
else

degsum += deg(u)

Algorithm Theory, WS 2015/16 Fabian Kuhn

2m—degsum

3)\“1 ' OCV\)

22

Randomized Min Cut Algorithm

UNI
|

FREIBURG

Theorem: If the contraction algorithm is repeated 0(n®logn)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

* One instance consists of n — 2 edge contractions

* Each edge contraction can be carried out in time 0 (n)
— Actually: O(current #nodes)

» Time per instance of the contraction algorithm: 0(n?)

%

Algorithm Theory, WS 2015/16 Fabian Kuhn 23

Can We Do Better?

UNI
|

FREIBURG

« Time O(n*logn) is not very spectacular, a simple max flow
based implementation has time 0(n*%).

However, we will see that the contraction algorithm is
nevertheless very interesting because:

1. The algorithm can be improved to beat every known
deterministic algorithm.

4. It allows to obtain strong statements about the distribution
of cuts in graphs.

Algorithm Theory, WS 2015/16 Fabian Kuhn 24

Better Randomized Algorithm

Recall:

Consider a fixed min cut (4, B), assume (A, B) has size k

The algorithm outputs (A4, B) iff none of the k edges crossing
(A, B) gets contracted.

Throughout the algorithm, the edge connectivity is at least k
and therefore each node has degree > k

Before contraction i, there are n + 1 — i nodes and thus at
least(n + 1 — i)k /2 edges

If no edge crossing (Z, B) is contracted before, the probability
to contract an edge crossing (A4, B) in step i is at most

k 2
n+1-Dk n+1-1i
2 e

Algorithm Theory, WS 2015/16 Fabian Kuhn 25

UNI
|

FREIBURG

Improving the Contraction Algorithm

UNI

FREIBURG

* For a specific min cut (4, B), if (4, B) survives the first i
contractions,

2
P(edge crossing (4, B) in contractioni + 1) <

— n—i

* Observation: The probability only gets large for large i

* l|ldea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early
ones.

—
ﬂk
‘ ;

<
=

Algorithm Theory, WS 2015/16 Fabian Kuhn 26

Safe Contraction Phase

",
W- ®]

UNI

FREIBURG

Lemma: A given min cut (4, B) of an n-node graph G survives the

firstn — ["/\/E + 1} cont

Proof:

—

ractions, with probability > /..

* Event &;: cut (4, B) survives contraction {
* Probability that (4, B) survives the first n — t contractions:

W-Z n-3 ow-YH

—

Z M owey W2

Algorithm Theory, WS 2015/16

£
t+2

Fabian Kuhn

Tt

Z

€-
+1

—_—
—

—_—
—

W/Q +|
_—

w

=
n

(& -0)
“lu=-1)

< -

W -y

& o))
w-t @ QT2

27

UNI

Better Randomized Algorithm

Let’s simplify a bit:

* Pretend that n/\/i is an integer (for all n we will need it).

* Assume that a given min cut survives the first n — "/\/E
——

contractions with probability > 1/,,.

contract(G, t):
e Starting with n-node graph G, perform n — t edge contractions

such that the new graph has t nodes. a-1/—
W (T

mincut(G): N =
|

=

1. X, := mincut (Contract(g,n/ﬁ)); & —<_

2. X, := mincut (contract(G,n/@));

3. return min{X, X,};
Algorithm Theory, WS 2015/16

Fabian Kuhn 28

FREIBURG

UNI

Success Probability

FREIBURG

mincut(G):

1. X; := mincut (Contract(G,n/\/i));
gl — oy

2. X, := mincut (contract(G,n/\/E));

3. return min{X{, X5};

P(n): probability that the above algorithm returns a min cut when
= applied to a graph with n nodes.

* Probability that X; is a min cut = Lz °?C/E)

Recursion:

Pozi-(1-Lem) = P& - 773 P@=)
_— - - .

Algorithm Theory, WS 2015/16 Fabian Kuhn 29

UNI

Success Probability oz g

FREIBURG

Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least 1/log, n.

Proof (by induction on n):

n 1 n\’

/ga%“‘&e'. wW=2 v

" ____’P(“/ \§ X — -)-;Z
W8 Sky: PG = P(VR) -+ /e
w1 L (- 545,
T () Y GlR" 4 > ‘

Algorithm Theory, WS 2015/16 Fabian Kuhn — 30

Running Time

UNI
|

FREIBURG

1. X; = mincut (Contract(G,n/\/i));

2. X, = mincut (contract(G,n/\/E));

3. return min{Xy, X,};

Recursion:

e T(n):time to apply algorithm to n-node graphs

e Recursive calls: 2T ("/\/5)

* Number of contractions to get to "‘/\/E nodes: O(n)

T(n) = 2T< e

Algorithm Theory, WS 2015/16

V2

) +0n?), T@)=0()

Fabian Kuhn

31

