Chapter 7
 Randomization

Algorithm Theory WS 2015/16

Fabian Kuhn

Randomized Contraction Algorithm

Algorithm: to compate a min. cut in a graph
while there are >2 nodes do
$O\left(u^{2}\right)$ contract a uniformly random edge

return cut induced by the last two remaining nodes
(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a specific minimum cut with probability at least $\underline{\underline{n(n-1)}}$.

Theorem: The random contraction algorithm can be implemented in time $O\left(n^{2}\right)$.

- There $\overline{\overline{a r e} n}-2$ contractions, each can be done in time $O(n)$.

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O\left(n^{2} \log n\right)$ times, one of the $O\left(n^{2} \log n\right)$ instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum cut in $O\left(n^{4} \log n\right)$ time w.h.p.

- One instance consists of $n-2$ edge contractions
- Each edge contraction can be carried out in time $O(n)$
- Actually: O (current \#nodes)
- Time per instance of the contraction algorithm: $O\left(n^{2}\right)$

Can We Do Better?

- Time $O\left(n^{4} \log n\right)$ is not very spectacular, a simple max flow based implementation has time $O \underline{\underline{\left(n^{4}\right)}}$.

However, we will see that the contraction algorithm is nevertheless very interesting because:

1. The algorithm can be improved to beat every known deterministic algorithm.
2. It allows to obtain strong statements about the distribution of cuts in graphs.

Improving the Contraction Algorithm

- For a specific min cut (A, B), if (A, B) survives the first i contractions,

$$
\mathbb{P}(\text { edge crossing }(A, B) \text { in contraction } i+1) \leq \frac{2}{\underline{n-i}} .
$$

- Observation: The probability only gets large for large i
- Idea: The early steps are much safer than the late steps. Maybe we can repeat the late steps more often than the early ones.

Safe Contraction Phase

Lemma: A given min cut (A, B) of an n-node graph G survives the first $n-\lceil n / \sqrt{2}+1\rceil$ contractions, with probability $>1 / 2$.

Proof:

- Event \mathcal{E}_{i} : cut (A, B) survives contraction i
- Probability that (A, B) survives the first $n-t$ contractions:

Better Randomized Algorithm

Let's simplify a bit:

- Pretend that $n / \sqrt{2}$ is an integer (for all n we will need it).
- Assume that a given min cut survives the first $n-n / \sqrt{2}$ contractions with probability $\geq 1 / 2$.
contract $(\underline{G}, \boldsymbol{t})$:
- Starting with \underline{n}-node graph G, perform $n-t$ edge contractions such that the new graph has t nodes.

$\operatorname{mincut}(G)$:

1. $X_{1}:=$ mincut $(\operatorname{contract}(G, n / \sqrt{2}))$;

2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;

Success Probability

$\operatorname{mincut}(G)$:

1. $X_{1}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;
$\boldsymbol{P}(\boldsymbol{n})$: probability that the above algorithm returns a min cut when applied to a graph with n nodes.

Theorem: The recursive randomized min cut algorithm returns a minimum cut with probability at least $P(n) \geq 1 / \log _{2} n$.

Running Time

1. $\quad X_{1}:=$ mincut $(\operatorname{contract}(G, n / \sqrt{2})) ; \quad u \longrightarrow 4 / \sqrt{2}$
2. $\quad X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;

3. return $\min \left\{X_{1}, X_{2}\right\}$;

Recursion:
Master Thu! $c=\log _{b} a$

$$
T(n)=a \cdot T(n / b)+O\left(n^{c}\right) \quad \text { Lo } O\left(n^{c} \cdot \log n\right)
$$

- $\underline{T(n)}$: time to apply algorithm to n-node graphs
- Recursive calls: $2 T(n / \sqrt{2})$
- Number of contractions to get to $n / \sqrt{2}$ nodes: $O(n)$

$$
\begin{aligned}
& T(n)=2 T\left(\frac{n}{\sqrt{2}}\right)+O\left(n^{2}\right), \\
& \longrightarrow T(2)=O(1) \\
& T T\left(n^{2} \log n\right)
\end{aligned}
$$

Running Time
$1-\varepsilon<e^{-\varepsilon}$
Theorem: The running time of the recursive, randomized min cut algorithm is $O\left(n^{2} \log n\right)$.

Proof:
(Master Thu)

$$
t=\theta\left(\log ^{2} n\right)
$$

- Can be shown in the usual way, by induction on n \qquad

$$
\left(1-\frac{1}{\log n}\right)^{t}<e^{-t / \log n} \stackrel{!}{=} \frac{1}{n^{c}}=e^{-c \ln n}
$$

- The running time is only by an $O \underline{(\log n)}$-factor slower than the basic contraction algorithm.
- The success probability is exponentially better!

If we want a min. cut w.h.p. $\left(1-\frac{1}{n^{2}}\right)$: we need $\theta\left(\log ^{2} n\right)$ rep.
\Longrightarrow running tine: $O\left(n^{2} \cdot \log ^{3} n\right) \leftarrow$
best deft. alg, $O\left(m \cdot n+n^{2} \log n\right)$

Number of Minimum Cuts

- Given a graph G, how many minimum cuts can there be?
- Or alternatively: If G has edge connectivity k, how many ways are there to remove k edges to disconnect G ?
- Note that the total number of cuts is large.

$$
2^{n-1}-2
$$

Number of Minimum Cuts

Example: Ring with n nodes

- Minimum cut size: 2
- Every two edges induce a min cut
- Number of edge pairs:
- Are there graphs with more min cuts?

Number of Min Cuts

Theorem: The number of minimum cuts of a graph is at most $\binom{n}{2}$. Proof:

$$
C_{i} \cap C_{3}=\varnothing
$$

- Assume there are $\underline{\underline{s}}$ min cuts $1, \ldots, s$
- For $i \in\{1, \ldots, s\}$, define event \mathcal{C}_{i} :

$$
\underline{\underline{\mathcal{C}_{i}}}:=\{\underline{\text { basic contraction algorithm returns min cut } i}\}
$$

- We know that for $i \in\{1, \ldots, s\}: \mathbb{P}\left(\mathcal{C}_{i}\right) \geq 1 /\binom{n}{2}=\frac{2}{u(n-1)}$
- Events $\mathcal{C}_{1}, \ldots, \mathcal{C}_{s}$ are disjoint:

$$
1 \geq \mathbb{P}\left(\bigcup_{i=1}^{s} c_{i}\right)=\sum_{i=1}^{s} \mathbb{P}\left(\mathcal{C}_{i}\right) \geq \frac{s}{\binom{n}{2}} \quad \begin{aligned}
& \begin{array}{l}
\text { can be generalized } \\
\text { \#cuts of site } \leq \alpha \cdot \lambda(G) \\
\text { is at most } n^{2 \alpha}
\end{array}
\end{aligned}
$$

