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Randomized Contraction Algorithm
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Algorithm: T co “‘Q“k q win . C:(* \;‘” “ %‘"“Y“
G

while there are > 2 nodes do
&¢) contract a uniformly random edge @
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a specific

minimum cut with probability at least :
n(n—1)

———————

Theorem: The random contraction algorithm can be implemented
in time 0(n?).

* Therearen — 2 contractions, each can be done in time O(n).
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Randomized Min Cut Algorithm
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Theorem: If the contraction algorithm is repeated 0 (n®logn)
. 2 . ———
times, one of the O(n“logn) instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

* One instance consists of n — 2 edge contractions

* Each edge contraction can be carried out in time 0 (n)
— Actually: O(current #nodes)

» Time per instance of the contraction algorithm: 0(n?)
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Can We Do Better?
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« Time O(n*logn) is not very spectacular, a simple max flow
based implementation has time 0 (n?).

However, we will see that the contraction algorithm is
nevertheless very interesting because:

1. The algorithm can be improved to beat every known
deterministic algorithm.

1. It allows to obtain strong statements about the distribution
of cuts in graphs.
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Improving the Contraction Algorithm
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* For a specific min cut (4, B), if (4, B) survives the first i
contractions, -

P(edge crossing (4, B) in contractioni + 1) <

n-—i

e

* Observation: The probability only gets large for large i

* l|ldea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early

ones.
-
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Safe Contraction Phase

UNI
|

FREIBURG

Lemma: A given min cut (4, B) of an n-node graph G survives the

firstn — [*/ - 4+ 1| contractions, with probability > 1/,.
Y i

Proof:
* Event &;: cut (4, B) survives contraction {
* Probability that (4, B) survives the first n — t contractions:
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Better Randomized Algorithm

FREIBURG

Let’s simplify a bit:
* Pretend that n/\/i is an integer (for all n we will need it).

* Assume that a given min cut survives the first n — "/\/E

contractions with probability > 1/,,.

—_—

contract(G, t):
* Starting with n-node graph G, perform n — t edge contractions
such that the new graph has t nodes.

—_— % v/z
mincut(G): —
1. X, := mincut (Contract(G,n/ﬁ));
*
2. X, = mincut (contract(G,n/\/i));
3. return min{X, X,};
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Success Probability
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mincut(G):
1. X; := mincut (Contract(G,n/\/i));
2. X, := mincut (contract(G,n/\/E));
3. return min{X{, X,};

P(n): probability that the above algorithm returns a min cut when
— applied to a graph with n nodes.

Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least P(n) = 1/log, n.
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Running Time :
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1. X; = mincut (Contract((},n/ﬁ\/?)); W — > "'/G_
2. X, := mincut (cgltrgct(G,n/ﬁ)); y

] — v
3. return min{X,, X,}; Kasles oy °=ﬂ°§\,°‘
Recursion: TW=a T + 0 b o n Loy )

* T(n):time to apply algorithm to n-node graphs

e Recursive calls: 2T ("/\/5)

* Number of contractions to get to "‘/\/E nodes: O(n)

T(Lz) = 2T (%) + 0(n?), T(2) =0(1)

— ‘L/ﬂﬂ = @(\’\1’&)8 “)
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Running Time ¢ < €°

Theorem: The running time of the recursive, randomized min cut
algorithm is O (n?logn).

Proof: (Masler ’ﬂm\) «5:9( [,6&)
 Can be shown in the usual way, by induction on n /
Q\__\_ t< ej’ﬁ" —,‘—.- —\:= éiﬁl‘f
Remark: fo&u. W
* The running time is only by an OM)-factor slower than
the basic contraction algorithm. Succ. pebo. 2_
* The success probability is exponentially better! "

\QY we waut X wiw, cut \N-\A.?. (\ -—\M—c) L we weed @(,@12.\) Rep.
ﬁw\m\\,& Puee @(\f-ﬁﬂﬁzn\) —
Tt Lot a&vt Ol wmmn + \'3206 V\)
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Number of Minimum Cuts (G 2>
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Given a graph G, how many minimum cuts can there be?

Or alternatively: If G has edge connectivity k, how many ways
are there to remove k edges to disconnect G?

Note that the total number of cuts is large.

n—\

, -2
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Number of Minimum Cuts
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Example: Ring with n nodes
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Minimum cut size: 2
=

Every two edges
induce a min cut

Number of edge pairs:

Are there graphs with
more min cuts?
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Number of Min Cuts
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Theorem: The number of minimum cuts of a graph is at most (Tzl)

Proof: - an =7
* Assume there are s mincuts \,.--,S
5 &

 Fori€{l,..,s}, define event C;: @& @
C; = {basic contraction algorithm returns min cut i}
2
* We know that fori € {1, ...,s}: P(C;) = 1/(;) = wa-D)

N
* Events Cy, ..., C; are disjoint:

s S S< (_;)
| = P C;l=) P > v Lo ceunnls
— (g ) ; (721) f{:u\-l:;& S i-r\(@)

&x
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e
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