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Approximation Algorithms 

• Optimization appears everywhere in computer science 
 

• We have seen many examples, e.g.: 
– scheduling jobs 

– traveling salesperson 

– maximum flow, maximum matching 

– minimum spanning tree 

– minimum vertex cover 

– … 
 

• Many discrete optimization problems are NP-hard 
 

• They are however still important and we need to solve them 
 

• As algorithm designers, we prefer algorithms that produce 
solutions which are provably good, even if we can’t compute 
an optimal solution. 
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Approximation Algorithms: Examples 

We have already seen two approximation algorithms 

 

• Metric TSP: If distances are positive and satisfy the triangle 
inequality, the greedy tour is only by a log-factor longer than an 
optimal tour 

 

• Maximum Matching and Vertex Cover: A maximal matching 
gives solutions that are within a factor of 2 for both problems. 
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Approximation Ratio 

An approximation algorithm is an algorithm that computes a 
solution for an optimization with an objective value that is provably 
within a bounded factor of the optimal objective value. 
 

Formally: 

• OPT ≥ 0 : optimal objective value 
ALG ≥ 0 : objective value achieved by the algorithm 
 

• Approximation Ratio 𝜶: 
 

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧:  𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓
 

 

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐎𝐏𝐓

𝐀𝐋𝐆
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Example: Load Balancing 

We are given: 

• 𝑚 machines 𝑀1, … ,𝑀𝑚 

• 𝑛 jobs, processing time of job 𝑖 is 𝑡𝑖  
 

Goal: 

• Assign each job to a machine such that the makespan is 
minimized 
 

makespan: largest total processing time of any machine 

 

The above load balancing problem is NP-hard and we therefore 
want to get a good approximation for the problem. 
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Greedy Algorithm 

There is a simple greedy algorithm: 

• Go through the jobs in an arbitrary order 

• When considering job 𝑖, assign the job to the machine that 
currently has the smallest load. 

 

Example: 3 machines, 12 jobs 

3 3 4 4 2 2 6 6 1 1 3 3 4 4 4 4 2 2 5 5 1 1 

Greedy Assignment: 
 

𝑴𝟏: 
 

𝑴𝟐: 
 

𝑴𝟑: 

3 3 

4 4 

2 2 3 3 

1 1 6 6 

4 4 

4 4 

2 2 

1 1 5 5 

Optimal Assignment: 
 

𝑴𝟏: 
 

𝑴𝟐: 
 

𝑴𝟑: 

3 3 4 4 2 2 1 1 3 3 

4 4 

4 4 5 5 1 1 

3 3 

3 3 6 6 3 3 

2 2 

3 3 4 4 2 2 6 6 1 1 3 3 4 4 4 4 2 2 5 5 1 1 3 3 
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Greedy Analysis 

• We will show that greedy gives a 2-approximation 
 

• To show this, we need to compare the solution of greedy with 
an optimal solution (that we can’t compute) 
 

• Lower bound on the optimal makespan 𝑇∗: 
 

𝑇∗ ≥
1

𝑚
⋅ 𝑡𝑖

𝑛

𝑖=1

 

 

• Lower bound can be far from 𝑇∗: 
– 𝑚 machines, 𝑚 jobs of size 1, 1 job of size 𝑚 

 

𝑇∗ = 𝑚,
1

𝑚
⋅ 𝑡𝑖

𝑛

𝑖=1

= 2 
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Greedy Analysis 

• We will show that greedy gives a 2-approximation 
 

• To show this, we need to compare the solution of greedy with 
an optimal solution (that we can’t compute) 
 

• Lower bound on the optimal makespan 𝑇∗: 
 

𝑇∗ ≥
1

𝑚
⋅ 𝑡𝑖

𝑛

𝑖=1

 

 

• Second lower bound on optimal makespan 𝑇∗: 
 

𝑇∗ ≥ max
1≤𝑖≤𝑛
𝑡𝑖  
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Greedy Analysis 

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e., 
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗. 

Proof: 

• For machine 𝑘, let 𝑇𝑘 be the time used by machine 𝑘 

• Consider some machine 𝑀𝑖 for which 𝑇𝑖 = 𝑇 

• Assume that job 𝑗 is the last one schedule on 𝑀𝑖: 

 

 
 

• When job 𝑗 is scheduled, 𝑀𝑖 has the minimum load 

 𝑇 − 𝑡𝑗  𝑇 − 𝑡𝑗  𝑡𝑗  𝑡𝑗 𝑴𝒊: 
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Greedy Analysis 

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e., 
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗. 

Proof: 

• For all machines 𝑀𝑘: load 𝑇𝑘 ≥ 𝑇 − 𝑡𝑗  


