
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Approximation Algorithms

• Optimization appears everywhere in computer science

• We have seen many examples, e.g.:
– scheduling jobs

– traveling salesperson

– maximum flow, maximum matching

– minimum spanning tree

– minimum vertex cover

– …

• Many discrete optimization problems are NP-hard

• They are however still important and we need to solve them

• As algorithm designers, we prefer algorithms that produce
solutions which are provably good, even if we can’t compute
an optimal solution.

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Approximation Algorithms: Examples

We have already seen two approximation algorithms

• Metric TSP: If distances are positive and satisfy the triangle
inequality, the greedy tour is only by a log-factor longer than an
optimal tour

• Maximum Matching and Vertex Cover: A maximal matching
gives solutions that are within a factor of 2 for both problems.

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Approximation Ratio

An approximation algorithm is an algorithm that computes a
solution for an optimization with an objective value that is provably
within a bounded factor of the optimal objective value.

Formally:

• OPT ≥ 0 : optimal objective value
ALG ≥ 0 : objective value achieved by the algorithm

• Approximation Ratio 𝜶:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐎𝐏𝐓

𝐀𝐋𝐆

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Example: Load Balancing

We are given:

• 𝑚 machines 𝑀1, … ,𝑀𝑚

• 𝑛 jobs, processing time of job 𝑖 is 𝑡𝑖

Goal:

• Assign each job to a machine such that the makespan is
minimized

makespan: largest total processing time of any machine

The above load balancing problem is NP-hard and we therefore
want to get a good approximation for the problem.

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Greedy Algorithm

There is a simple greedy algorithm:

• Go through the jobs in an arbitrary order

• When considering job 𝑖, assign the job to the machine that
currently has the smallest load.

Example: 3 machines, 12 jobs

3 3 4 4 2 2 6 6 1 1 3 3 4 4 4 4 2 2 5 5 1 1

Greedy Assignment:

𝑴𝟏:

𝑴𝟐:

𝑴𝟑:

3 3

4 4

2 2 3 3

1 1 6 6

4 4

4 4

2 2

1 1 5 5

Optimal Assignment:

𝑴𝟏:

𝑴𝟐:

𝑴𝟑:

3 3 4 4 2 2 1 1 3 3

4 4

4 4 5 5 1 1

3 3

3 3 6 6 3 3

2 2

3 3 4 4 2 2 6 6 1 1 3 3 4 4 4 4 2 2 5 5 1 1 3 3

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Greedy Analysis

• We will show that greedy gives a 2-approximation

• To show this, we need to compare the solution of greedy with
an optimal solution (that we can’t compute)

• Lower bound on the optimal makespan 𝑇∗:

𝑇∗ ≥
1

𝑚
⋅ 𝑡𝑖

𝑛

𝑖=1

• Lower bound can be far from 𝑇∗:
– 𝑚 machines, 𝑚 jobs of size 1, 1 job of size 𝑚

𝑇∗ = 𝑚,
1

𝑚
⋅ 𝑡𝑖

𝑛

𝑖=1

= 2

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Greedy Analysis

• We will show that greedy gives a 2-approximation

• To show this, we need to compare the solution of greedy with
an optimal solution (that we can’t compute)

• Lower bound on the optimal makespan 𝑇∗:

𝑇∗ ≥
1

𝑚
⋅ 𝑡𝑖

𝑛

𝑖=1

• Second lower bound on optimal makespan 𝑇∗:

𝑇∗ ≥ max
1≤𝑖≤𝑛
𝑡𝑖

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Greedy Analysis

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e.,
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗.

Proof:

• For machine 𝑘, let 𝑇𝑘 be the time used by machine 𝑘

• Consider some machine 𝑀𝑖 for which 𝑇𝑖 = 𝑇

• Assume that job 𝑗 is the last one schedule on 𝑀𝑖:

• When job 𝑗 is scheduled, 𝑀𝑖 has the minimum load

 𝑇 − 𝑡𝑗 𝑇 − 𝑡𝑗 𝑡𝑗 𝑡𝑗 𝑴𝒊:

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Greedy Analysis

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e.,
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗.

Proof:

• For all machines 𝑀𝑘: load 𝑇𝑘 ≥ 𝑇 − 𝑡𝑗

